Spelling suggestions: "subject:"superalgebras"" "subject:"superalgebra""
11 |
Engel's Theorem in generalized lie algebras /Radu, Oana, January 2002 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2002. / Bibliography: leaves 42-43.
|
12 |
Quantum Superalgebras at Roots of Unity and Topological Invariants of Three-manifoldsBlumen, Sacha Carl January 2005 (has links)
The general method of Reshetikhin and Turaev is followed to develop topological invariants of closed, connected, orientable 3-manifolds from a new class of algebras called pseudomodular Hopf algebras. Pseudo-modular Hopf algebras are a class of Z_2-graded ribbon Hopf algebras that generalise the concept of a modular Hopf algebra. The quantum superalgebra Uq(osp(1|2n)) over C is considered with q a primitive Nth root of unity for all integers N > = 3. For such a q, a certain left ideal I of U_q(osp(1|2n)) is also a two-sided Hopf ideal, and the quotient algebra U^(N)_q(osp(1|2n)) = U_q(osp(1|2n))/I is a Z_2-graded ribbon Hopf algebra. For all n and all N > = 3, a finite collection of finite dimensional representations of U^(N)_q(osp(1|2n)) is defined. Each such representation of U^(N)_q(osp(1|2n)) is labelled by an integral dominant weight belonging to the truncated dominant Weyl chamber. Properties of these representations are considered: the quantum superdimension of each representation is calculated, each representation is shown to be self-dual, and more importantly, the decomposition of the tensor product of an arbitrary number of such representations is obtained for even N. It is proved that the quotient algebra U(N)^q_(osp(1|2n)), together with the set of finite dimensional representations discussed above, form a pseudo-modular Hopf algebra when N > = 6 is twice an odd number. Using this pseudo-modular Hopf algebra, we construct a topological invariant of 3-manifolds. This invariant is shown to be different to the topological invariants of 3-manifolds arising from quantum so(2n+1) at roots of unity.
|
13 |
Link invariants, quantized superalgebras and the Kontsevich integral /Geer, Nathan, January 2004 (has links)
Thesis (Ph. D.)--University of Oregon, 2004. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 123-125). Also available for download via the World Wide Web; free to University of Oregon users.
|
14 |
Quantum Toroidal SuperalgebrasPereira Bezerra, Luan 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We introduce the quantum toroidal superalgebra E(m|n) associated with the Lie superalgebra gl(m|n) and initiate its study. For each choice of parity "s" of gl(m|n), a corresponding quantum toroidal superalgebra E(s) is defined.
To show that all such superalgebras are isomorphic, an action of the toroidal braid group is constructed.
The superalgebra E(s) contains two distinguished subalgebras, both isomorphic to the quantum affine superalgebra Uq sl̂(m|n) with parity "s", called vertical and horizontal subalgebras. We show the existence of Miki automorphism of E(s), which exchanges the vertical and horizontal subalgebras.
If m and n are different and "s" is standard, we give a construction of level 1 E(m|n)-modules through vertex operators. We also construct an evaluation map from E(m|n)(q1,q2,q3) to the quantum affine algebra Uq gl̂(m|n) at level c=q3^(m-n)/2.
|
15 |
Superderivações e superhomomorfismos de Jordan e identidades funcionais / Jordan superderivations and superhomomorphisms and functional identitiesSilva, Willian Ribeiro Valencia da 12 August 2015 (has links)
O objetivo desta dissertação é apresentar a generalização de alguns resultados, válidos para anéis, para o contexto de superálgebras. Em 1957, I. N. Herstein provou que toda derivação de Jordan em um anel primo de característica diferente de 2 é uma derivação. Em 1988, M. Bresar demonstrou que este fato também é válido no caso em que o anel é semiprimo. Nos Capítulos 2 e 3, apresentamos generalizações desses resultados, dadas por M. Fosner, em 2003, e que afirmam que em uma superálgebra associativa prima, cuja parte par é não comutativa, toda superderivação de Jordan é uma superderivação, e que se D é uma superderivação de Jordan em uma superálgebra associativa semiprima A, então, existem ideais graduados U e V de A, cuja soma direta é um ideal essencial de A, isto é, a interseção da soma direta com qualquer ideal graduado não nulo de A, é não nula, tais que se U = 0, então, a parte par de A é comutativa e se V = 0, então, D é uma superderivação. Em 1956, I. N. Herstein mostrou que todo homomorfismo de Jordan sobrejetor, de um anel qualquer em um anel primo de característica diferente de 2 e 3, é um homomorfismo ou um antihomomorfismo, e em 1957, M. Smiley provou o mesmo resultado sem usar a hipótese de que a característica do anel é diferente de 3. No Capítulo 4, apresentamos a generalização desse resultado dada por K. Beidar, M. Bresar e M. Chebotar, em 2003, e que afirma que todo superhomomorfismo de Jordan sobrejetor de uma superálgebra associativa qualquer em uma superálgebra associativa prima, cuja parte par não é comutativa, é um superhomomorfismo ou um superantihomomorfismo. No Capítulo 5, introduzimos o resultado de W. Baxter e W. Martindale, 3º, de 1979, que afirma que todo homomorfismo de Jordan sobrejetor, em um anel semiprimo de característica diferente de 2, quando restrito a um certo ideal essencial do domínio, é a soma direta de um homomorfismo com um antihomomorfismo. Finalmente no último capítulo, fazemos uma exposição da teoria de identidades funcionais dada por M. Bresar, M. Chebotar e W. Martindale, 3º, apresentamos a generalização da teoria para superálgebras, dada por Yu Wang, em 2011, e ainda um resultado de Yu Wang e Yao Wang, de 2014, que afirma que todo superhomomorfismo de Jordan de uma superálgebra em uma superálgebra unitária, tal que a imagem é um subconjunto 4-superlivre do contradomínio, é uma soma direta de um superhomomorfismo com um superantihomomorfismo. Finalmente, apresentamos uma contribuição original para a classificação das superderivações de Jordan de grau 0. / The goal of this dissertation is to present the generalization of some results, which hold in rings, for the context of superalgebras. In 1957, I. N. Herstein proved that every Jordan derivation on a prime ring with characteristic not 2 is a derivation. In 1988, M. Bresar proved that the result still holds when the ring is semiprime. In the Chapters 2 and 3, we present generalizations for these results, given by M. Fosner, in 2003, which state that on a prime associative superalgebra, whose even part is noncommutative, every Jordan superderivation is a superderivation, and if D is a Jordan superderivation on a semiprime associative superalgebra A, then, there exist graded ideals U and V of A, where the direct sum of them is an essential ideal of A, that is, the intersection of the direct sum and any nonzero graded ideal of A, is nonzero, such that if U=0, then the even part of A is commutative and if V=0, then D is a superderivation. In 1956, I. N. Herstein proved that every Jordan homomorphism onto a prime ring with characteristic not 2 or 3, is either a homomorphism or an antihomomorphism, and in 1957, M. Smiley proved the same result without assuming that the characteristic of the ring is not 3. In the Chapter 4, we present a generalization of this result given by K. Beidar, M. Bresar and M. Chebotar, in 2003, which states that every Jordan superhomomorphism from an associative superalgebra onto a prime associative superalgebra, whose even part is noncommutative, is either a superhomomorphism or a superantihomomorphism. In Chapter 5, we present a result given by W. Baxter and W. Martindale, 3rd, in 1979, which states that every Jordan homomorphism onto a semiprime ring, with characteristic not 2, when restricted to a certain essential ideal of the domain, is the direct sum of a homomorphism and an antihomomorphism. Finally, in the last chapter, we present the theory of functional identities, given by M. Bresar, M. Chebotar and W. Martindale, 3rd, we also present the generalization of the theory for superalgebras given by Yu Wang, in 2011, and a result given by Yu Wang and Yao Wang, in 2014, which states that every Jordan superhomomorphism from a superalgebra into an unital superalgebra, such that its range is a 4-superfree subset of the codomain, is the direct sum of a superhomomorphism and a superantihomomorphism. Finally, we present an original contribution to the classification of the Jordan superderivations of degree 0.
|
16 |
A super version of Zhu's theorem /Jordan, Alex, January 2008 (has links)
Thesis (Ph. D.)--University of Oregon, 2008. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 40-41). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
|
17 |
Solutions to the Yang-Baxter equation and Casimir invariants for the equantised orthosymplectic superalgebra /Dancer, Karen. January 2004 (has links) (PDF)
Thesis (Ph.D.) - University of Queensland, 2005. / Includes bibliography.
|
18 |
Superderivações e superhomomorfismos de Jordan e identidades funcionais / Jordan superderivations and superhomomorphisms and functional identitiesWillian Ribeiro Valencia da Silva 12 August 2015 (has links)
O objetivo desta dissertação é apresentar a generalização de alguns resultados, válidos para anéis, para o contexto de superálgebras. Em 1957, I. N. Herstein provou que toda derivação de Jordan em um anel primo de característica diferente de 2 é uma derivação. Em 1988, M. Bresar demonstrou que este fato também é válido no caso em que o anel é semiprimo. Nos Capítulos 2 e 3, apresentamos generalizações desses resultados, dadas por M. Fosner, em 2003, e que afirmam que em uma superálgebra associativa prima, cuja parte par é não comutativa, toda superderivação de Jordan é uma superderivação, e que se D é uma superderivação de Jordan em uma superálgebra associativa semiprima A, então, existem ideais graduados U e V de A, cuja soma direta é um ideal essencial de A, isto é, a interseção da soma direta com qualquer ideal graduado não nulo de A, é não nula, tais que se U = 0, então, a parte par de A é comutativa e se V = 0, então, D é uma superderivação. Em 1956, I. N. Herstein mostrou que todo homomorfismo de Jordan sobrejetor, de um anel qualquer em um anel primo de característica diferente de 2 e 3, é um homomorfismo ou um antihomomorfismo, e em 1957, M. Smiley provou o mesmo resultado sem usar a hipótese de que a característica do anel é diferente de 3. No Capítulo 4, apresentamos a generalização desse resultado dada por K. Beidar, M. Bresar e M. Chebotar, em 2003, e que afirma que todo superhomomorfismo de Jordan sobrejetor de uma superálgebra associativa qualquer em uma superálgebra associativa prima, cuja parte par não é comutativa, é um superhomomorfismo ou um superantihomomorfismo. No Capítulo 5, introduzimos o resultado de W. Baxter e W. Martindale, 3º, de 1979, que afirma que todo homomorfismo de Jordan sobrejetor, em um anel semiprimo de característica diferente de 2, quando restrito a um certo ideal essencial do domínio, é a soma direta de um homomorfismo com um antihomomorfismo. Finalmente no último capítulo, fazemos uma exposição da teoria de identidades funcionais dada por M. Bresar, M. Chebotar e W. Martindale, 3º, apresentamos a generalização da teoria para superálgebras, dada por Yu Wang, em 2011, e ainda um resultado de Yu Wang e Yao Wang, de 2014, que afirma que todo superhomomorfismo de Jordan de uma superálgebra em uma superálgebra unitária, tal que a imagem é um subconjunto 4-superlivre do contradomínio, é uma soma direta de um superhomomorfismo com um superantihomomorfismo. Finalmente, apresentamos uma contribuição original para a classificação das superderivações de Jordan de grau 0. / The goal of this dissertation is to present the generalization of some results, which hold in rings, for the context of superalgebras. In 1957, I. N. Herstein proved that every Jordan derivation on a prime ring with characteristic not 2 is a derivation. In 1988, M. Bresar proved that the result still holds when the ring is semiprime. In the Chapters 2 and 3, we present generalizations for these results, given by M. Fosner, in 2003, which state that on a prime associative superalgebra, whose even part is noncommutative, every Jordan superderivation is a superderivation, and if D is a Jordan superderivation on a semiprime associative superalgebra A, then, there exist graded ideals U and V of A, where the direct sum of them is an essential ideal of A, that is, the intersection of the direct sum and any nonzero graded ideal of A, is nonzero, such that if U=0, then the even part of A is commutative and if V=0, then D is a superderivation. In 1956, I. N. Herstein proved that every Jordan homomorphism onto a prime ring with characteristic not 2 or 3, is either a homomorphism or an antihomomorphism, and in 1957, M. Smiley proved the same result without assuming that the characteristic of the ring is not 3. In the Chapter 4, we present a generalization of this result given by K. Beidar, M. Bresar and M. Chebotar, in 2003, which states that every Jordan superhomomorphism from an associative superalgebra onto a prime associative superalgebra, whose even part is noncommutative, is either a superhomomorphism or a superantihomomorphism. In Chapter 5, we present a result given by W. Baxter and W. Martindale, 3rd, in 1979, which states that every Jordan homomorphism onto a semiprime ring, with characteristic not 2, when restricted to a certain essential ideal of the domain, is the direct sum of a homomorphism and an antihomomorphism. Finally, in the last chapter, we present the theory of functional identities, given by M. Bresar, M. Chebotar and W. Martindale, 3rd, we also present the generalization of the theory for superalgebras given by Yu Wang, in 2011, and a result given by Yu Wang and Yao Wang, in 2014, which states that every Jordan superhomomorphism from a superalgebra into an unital superalgebra, such that its range is a 4-superfree subset of the codomain, is the direct sum of a superhomomorphism and a superantihomomorphism. Finally, we present an original contribution to the classification of the Jordan superderivations of degree 0.
|
19 |
Quantum Toroidal SuperalgebrasLuan Pereira Bezerra (8766687) 30 April 2020 (has links)
<div> We introduce the quantum toroidal superalgebra E<sub>m|n </sub>associated with the Lie superalgebra gl<sub>m|n</sub> and initiate its study. For each choice of parity "s" of gl<sub>m|n</sub>, a corresponding quantum toroidal superalgebra E<sub>s</sub> is defined. </div><div> </div><div><br></div><div>To show that all such superalgebras are isomorphic, an action of the toroidal braid group is constructed. </div><div><br></div><div>The superalgebra E<sub>s</sub> contains two distinguished subalgebras, both isomorphic to the quantum affine superalgebra U<sub>q</sub> sl̂<sub>m|n</sub> with parity "s", called vertical and horizontal subalgebras. We show the existence of Miki automorphism of E<sub>s</sub>, which exchanges the vertical and horizontal subalgebras.</div><div><br></div><div>If <i>m</i> and <i>n</i> are different and "s" is standard, we give a construction of level 1 E<sub>m|n</sub>-modules through vertex operators. We also construct an evaluation map from E<sub>m|n</sub>(q<sub>1</sub>,q<sub>2</sub>,q<sub>3</sub>) to the quantum affine algebra U<sub>q</sub> gl̂<sub>m|n</sub> at level c=q<sub>3</sub><sup>(m-n)/2</sup>.</div>
|
20 |
Introdução à teoria de álgebras e módulos conformais. / Introduction to the theory of conformal algebra and conformal moduleMartins, Renato Alessandro 27 June 2008 (has links)
Definição, classificação, propriedades e exemplos básicos da teoria de superálgebras conformes e módulos conformes. / Definition, classification, properties and basic examples about conformal superalgebras and conformal modules.
|
Page generated in 0.0711 seconds