• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 466
  • 142
  • 112
  • 38
  • 24
  • 23
  • 21
  • 8
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 1034
  • 329
  • 252
  • 247
  • 167
  • 137
  • 129
  • 128
  • 116
  • 112
  • 107
  • 107
  • 102
  • 94
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Gas sensor array modeling and cuprate superconductivity from correlated spin disorder /

Fulkerson, Matthew David. January 2002 (has links)
No description available.
242

Magnetic properties of superfluid and normal ³He, and a search for superconductivity in gold /

Scholz, Harold Norman, January 1981 (has links)
No description available.
243

MAGNESIUM DIBORIDE JOSEPHSON JUNCTIONS FOR SUPERCONDUCTING DEVICES AND CIRCUITS

Cunnane, Daniel January 2013 (has links)
Superconductivity in magnesium diboride (MgB2) was first discovered in 2001. It is unique in that it has two superconducting gaps. The transition temperature of 39 K exceeded the maximum transition temperature thought to be possible through phonon mediated superconductivity. Through the study of MgB2, a general paradigm is being formulated to describe multi-gap superconductors. The paradigm includes inter-band and intra-band scattering between the gaps which can cause a smearing of the gap parameter over a distribution instead of a single value. Although each gap is individually thought to be well described by the BCS theory, the interaction between the two gaps causes complications in describing the overall superconducting properties of MgB2. The focus of this work was to lay the groundwork for an MgB2-based Josephson junction technology. This includes improving on a previously established baseline for all-MgB2 Josephson junctions, utilizing the Josephson Effect to experimentally verify a model pertaining to the two-gap nature of MgB2, specifically the magnetic penetration depth, and designing, fabricating, and testing multi-junction devices and circuits. The experiments in this work included fabrication of Josephson Junctions, DC superconducting quantum interference devices (SQUIDs), Josephson junction arrays, and a rapid single flux quantum (RSFQ) circuit. The junctions were all made utilizing the hybrid physical-chemical vapor deposition method, with an MgO sputtered barrier. The current process consists of three superconducting layers which are patterned using standard UV photolithography and etched with Ar ion milling. There were SQUIDS made with sensitivity to magnetic fields parallel to the film surface, which were used to measure the inductance of MgB2 microstrips. This inductance was used in design of more complicated devices as well as in calculating the magnetic penetration depth of MgB2, found to be about 40 nm at low temperature, in good agreement with a previously published theoretical model. Planar-type DC SQUIDs were also made to present the feasibility of the technology for application purposes. The large voltage modulation of over 500 μV at 15 K for these devices along with operation up to 37 K shows that MgB2 is a potential replacement for low temperature devices. The junction series arrays were fabricated with 100 junctions of equal size to present the ever-increasing robustness of the technology. The devices served well to measure the large property spread associated with these junctions and have been well established as a diagnostic tool for improving this spread. The culmination of this work was a basic RSFQ toggle flip flop circuit. A DC measurement of these circuits yielded digital operation up to 180 GHz at low temperature and about 63 GHz at 20 K. This is not yet near the potential limit of MgB2 established by the value of the superconducting gap parameters, but a huge success in showing that MgB2 is a viable option for pursuing superconducting digital electronics suitable for low power, cryogen-free operation. / Physics
244

A Study of Inhomogeneities and Anisotrophies In Superconductors via Ginzburg-Landau Type models

Deang, Jennifer M. 14 March 1997 (has links)
Superconductivity continues to be of great theoretical and practical interest and remains a challenging area of scientific inquiry. Most superconductors of practical utility are of type-II, i.e., they allow the penetration of magnetic fields in the form of tubes of flux that are referred to as "vortices." Motion of these vortices due to, e.g., applied currents, induce a loss of perfect conductivity. Knowing how vortices move and arrange themselves in lattice structures, how their movement is suppressed by pinning mechanisms, and how their movement is affected by thermal fluctuations is critical to understanding how to maintain resistanceless current flow. We study a variety of Ginzburg-Landau type models for superconductivity that can account for inhomogeneous and isotropy materials, grain boundaries, and thermal fluctuations. We develop robust, accurate, and efficient numerical codes and apply them to numerous studies of how vortex motions are affected by the various mechanisms mentioned above. We also examine some analytical aspects of type-II superconductors under the influence of thermal fluctuations. / Ph. D.
245

Magnetism and superconductivity in iron pnictides and iron chalcogenides

Wright, Jack Daniel January 2013 (has links)
This thesis presents a study on several series of unconventional Fe-based superconductors; namely, derivatives of NaFeAs and LiFeAs, as well as molecular-intercalated FeSe. Primarily using muon spin rotation (SR), but also x-ray diffraction (XRD) and magnetic susceptibility measurements, the nature of both magnetic and superconducting phases within these systems is studied. Particular attention is focussed on how these states compete or coexist with one another. The aforementioned experimental techniques are first used to explore the phase diagram of NaFe1xCoxAs. This phase diagram includes regions of long-range antiferromagnetism and short-range order, that both coexist with superconductivity. Magnetism is gradually destroyed, primarily through a diminishment of the size of the ordered moment, as superconductivity is enhanced by Co substitution. This interplay is explored in detail. By contrast, superconductivity in LiFeAs cannot be enhanced by transition metal substitution, suggesting that it is intrinsically optimally-doped. I investigate this conclusion by studying the evolution of the penetration depth in superconducting compositions of LiFe1xCoxAs and LiFe1xNixAs, and comparing these data to those from other electron-doped systems. I also study an unusual and emergent magnetic phase in Li1yFe1+yAs. This work suggests that LiFeAs supports a superconducting phase that resembles those in other Fe-pnictides, but is uniquely close to an additional magnetic instability. I then move on to the study of a recently discovered series, based on FeSe intercalated with ammonia and various metals. I study both the penetration depth and the intrinsic magnetic phases in these systems using SR and compare them with other compounds based on FeSe. I find that these intercalated systems support spacially separated regions of dynamic magnetism and superconductivity and I discuss how much these phases depend on the precise chemical details of the intercalated layer. Finally, I return to the experimental study of NaFe1xCoxAs, extending the range of techniques employed by using high-field magnetometry and high-pressure SR. These studies reveal new features of this system that were not accessible using low-field and ambient-pressure methods. In particular, I show that the magnetic moment size in NaFeAs unexpectedly increases with pressure, suggesting that the electronic structure of this compound may be unique amongst known Fe-based superconductors.
246

MAGNETIC PROPERTIES OF Nb/Ni SUPERCONDUCTING / FERROMAGNETIC MULTILAYERS

Kryukov, Sergiy A 01 January 2012 (has links)
Magnetic properties of Nb/Ni superconducting (SC) / ferromagnetic (FM) multilayers exhibit interesting properties near and below SC transition. A complex Field (H) – Temperature (T) phase boundary is observed in perpendicular and parallel orientation of ML with respect to DC field. We address the critical need to develop methods to make reliable magnetic measurements on SC thin films and ML, in spite of their extreme shape anisotropy and the strong diamagnetic response of the SC state. Abrupt, highly reproducible “switching” of the SC state magnetization near the normal-state FM coercive fields has been observed in Nb/Ni ML. The SC penetration depth l(Nb) > the SC coherence length xo(Nb) » 40 nm >> the FM layer thickness y(Ni) = 5 nm, abrupt magnetic reversals might be driven by strong supercurrent densities (J x M torques) that have the potential to flow into the Ni layers. Alternatively, sharp magnetization anomalies also can result from strong flux pinning by the periodic layered structure of ML, including “lock-in” of quantized flux lines (FL) parallel to the ML plane. Strong confinement of the supercurrents within ML planes might also lead to various phase transitions of the FL lattice (FLL) composed of one-dimensional chains and other unusual structures. Possible mechanisms for the switching anomalies must be evaluated while considering other experimental properties of Nb(x)/Ni(y) ML: 1) The upper critical magnetic field Hc2(T) exhibits a highly unusual anisotropy where the SC transition temperature Tc (H®0) for DC field H ^ ML plane exceeds the value for H || ML by ~ 0.5 K. 2) Nb/Ni ML samples do not consistently exhibit magnetic signatures for the onset of superconductivity, depending on the details of the sample mounting procedure and the AC or DC method used in SQUID magnetometry experiments. 3) Unusual “wiggles” or oscillations of order 10-30 mK were observed in Hc2(T) in AC SQUID experiments with H || ML and can be even larger (~0.16 K), depending upon the AC drive amplitude ho and frequency f .
247

Tuning the dimensionality and interactions in transition metal oxides : a μSR study

Baker, Peter James January 2007 (has links)
This thesis is concerned with how the physical properties of transition metal oxides change due to chemical substitution or intercalation. Experiments using the muon-spin relaxation and rotation (μSR) techniques were carried out at the ISIS Facility (UK) and the Paul Scherrer Institute (CH). In conjunction with the μSR results, the results of heat capacity and magnetic susceptibility experiments are used to provide complementary information on the same samples. Investigations of the properties of the layered triangular lattice magnets NaNiO2 and LiNiO2 are presented. For NaNiO2, all three experimental techniques are used to provide a full survey of the thermodynamic and magnetic properties of this compound. For LiNiO2, μSR studies of notionally stoichiometric and Mg-doped samples were carried out. These showed that Mg doping causes a significant change in the magnetic dynamics of the material, but neither sample exhibits long-range magnetic order. The magnetic ordering of the extensively studied perovskite compounds LaTiO3 and YTiO3 is investigated using μSR. The results were in agreement with previous neutron diffraction studies of the two compounds, but clarified the orientation of the magnetic moments in LaTiO3. It was also possible to make a detailed comparison between the μSR results and those of dipole field calculations of the magnetic field at possible muon stopping sites, allowing these to be deduced and compared with results in other well characterized transition metal oxides. The two titanium chain compounds NaTiSi2O6 and TiOCl exhibit spin gap formation at unusually high temperatures due to unconventional dimerization mechanisms. A model allowing the comparison of X-ray diffraction data, dimerization, and the magnitude of the spin gap is proposed. This is tested against both magnetic susceptibility and μSR data for both compounds. For NaTiSi2O6 both experimental techniques are in reasonable agreement, whereas in TiOCl the results are conclusively different. The origin of this disparity in TiOCl is explored. The intercalation of organic chain molecules into Bi based high-temperature superconductors has previously been demonstrated to extend the interlayer spacing by a factor of up to three without changing the superconducting transition temperature. μSR is used to investigate the London penetration depth, as a function of interlayer spacing, of two series of such samples. The results show a simple trend corresponding to a constant density of superconducting electron pairs in each layer. The consequences of this result are discussed in the context of previously identified scaling relations between superconducting parameters. Results of experiments excluding the possibility of magnetic order and muon-organic radical formation in these samples are presented, as well a preliminary study of the field distributions in a mosaic of intercalated crystallites.
248

Quantum materials explored by neutron scattering

Babkevich, Peter January 2012 (has links)
This thesis describes neutron scattering experiments on strongly correlated systems exhibiting a range of emergent phenomena: antiferromagnetism, charge order, superconductivity and multiferroicity. I have examined the La_{2}CoO_{4} compound which is a Mott insulator and orders antiferromagnetically near room temperature. The La_{2}CoO_{4} sample was studied using spherical neutron polarimetry and I present magnetic structure models to describe the two antiferromagnetic phases of the compound. Furthermore, the magnetic fluctuations have been investigated using neutron time-of-flight technique. This has allowed us to extract the dominant exchange interactions in the system. More interestingly, the work on La_{2}CoO_{4} presented in this thesis provides a basis for the experimental evidence of an hourglass dispersion in La_{5/3}Sr_{1/3}CoO_{4}, previously only observed in the copper oxide based superconductors. This dispersion has been understood in terms of a stripe ordered magnetic phase and was found to be well described by a linear spin-wave model. Neutron scattering experiments were also carried out on the new iron-based high-temperature superconductors, FeSe_{x}Te_{1−x}. A range of compositions were studied, including both antiferromagnetically ordered and superconducting. Below the superconducting phase transition temperature, a spin resonance mode was found centred on the antiferromagnetic wavevector. This is an important feature shared by many unconventional superconductors. The spin resonance intensity was found to reflect the order parameter of the superconducting state. Polarised inelastic neutron scattering experiments have revealed a small anisotropy between the in-plane and out-of-plane magnetic fluctuations at the resonance. This anisotropy cannot be readily explained by the usual anisotropic terms in the Hamiltonian. This could be evidence of new physics in the FeSe_{x}Te_{1−x} superconductors. Finally, I have studied CuO – a high-temperature multiferroic. Analysis of polarised neutron diffraction experiments shows that the magnetic domain population can be varied using an externally applied electric field. This unambiguously demonstrates coupling between the magnetic and ferroelectric degrees of freedom. Using representation analysis I derive the incommensurate magnetic structure in the multiferroic phase. The origin of the magnetoelectric coupling is consistent with models based on the inverse Dzyaloshinskii-Moriya interaction.
249

Estudo da supercondutividade nos sistemas intermetálicos não-centrossimétricos de composição YCo1-xC2 e Lu1-xThxNiC2 / Analysis of the superconductivity in the intermetallic noncentrosymmetric systems YCo1-xC2 and Lu1-xThxNiC2

Velazquez, Orlando Cigarroa 20 November 2015 (has links)
Recentemente, os compostos não-centrossimétricos têm sido intensamente estudados devido à grande variedade de comportamentos magnéticos, os quais são induzidos pela ausência de centro de simetria na sua estrutura cristalográfica. Esta assimetria induz uma modificação na estrutura de bandas, causando um acoplamento spin-orbita antissimétrico quem é responsável por mecanismos de interação magnética inusuais. A supercondutividade em este tipo de compostos apresenta propriedades que divergem do comportamento esperado pela teoria BCS. Neste trabalho será apresentado um estudo sobre a investigação de supercondutividade em dois sistemas ternários, Y-Co-C e Lu-Ni-C particularmente nos compostos YCo1-xC2 e Lu1-xThNiC2. Estes compostos cristalizam na estrutura CeNiC2 de simetria ortorrômbica é do grupo espacial 38 Amm2 que não possui centro de inversão. As técnicas de caracterização usadas neste trabalho incluem medidas de magnetização, resistividade e calor especifico como funções da temperatura, assim como magnetização como função do campo magnético aplicado. O composto YCo0.7C2 é supercondutor com Tc = 4 K e exibe um comportamento que diverge da teoria BCS. As medidas realizadas neste trabalho sugerem que este material é um forte candidato como supercondutor não convencional, onde poderia existir uma mistura de contribuições nos canais singleto e tripleto. No caso do sistema Lu1-xThxNiC2 os resultados preliminares indicam claramente supercondutividade nos compostos dopados com Th, onde a composição Lu0.6Th0.4NiC2 apresenta uma Tc= 8 K. / In recent years, non-centrosymmetric compounds have attracted a great interest because of their wealth variety of topical behaviors, induced by the lack of the inversion center on the crystallographic structure. This asymmetry leads to a strong modification in the band structures, causing an antisymmetric spin-orbit coupling which is responsible for unusual magnetic interaction mechanisms. Superconductivity in compounds whose crystal structure lacks inversion symmetry are known to display intriguing properties that deviate from conventional BCS superconducting behavior. Here we report the analysis of the ternary systems Y-Co-C and Lu-Ni-C, We focused our analysis in the intermetallic compounds YCo1-xC2 and Lu1-xThxNiC2. Magnetization, resistivity, and heat capacity measurements on polycrystalline samples of noncentrosymmetric YCo0.7C2, showing clear evidence of bulk superconductivity with a critical temperature of Tc =4 K. Interestingly the specific heat of the superconducting state deviates from conventional exponential temperature dependence, which is suggestive of possible unconventional superconducting behavior in YCo0.7C2, similar to that seen in the isostructural and isoelectronic superconductor LaNiC2. Besides, these results strongly suggest that this material is a strong candidate of multiband superconductivity. In the case of the system Lu1- xThxNiC2 our results showed a clear superconducting signal in the Th doped samples, where the composition Lu0.6Th0.4NiC2 has a Tc= 8 K.
250

Estudo da supercondutividade nos sistemas intermetálicos não-centrossimétricos de composição YCo1-xC2 e Lu1-xThxNiC2 / Analysis of the superconductivity in the intermetallic noncentrosymmetric systems YCo1-xC2 and Lu1-xThxNiC2

Orlando Cigarroa Velazquez 20 November 2015 (has links)
Recentemente, os compostos não-centrossimétricos têm sido intensamente estudados devido à grande variedade de comportamentos magnéticos, os quais são induzidos pela ausência de centro de simetria na sua estrutura cristalográfica. Esta assimetria induz uma modificação na estrutura de bandas, causando um acoplamento spin-orbita antissimétrico quem é responsável por mecanismos de interação magnética inusuais. A supercondutividade em este tipo de compostos apresenta propriedades que divergem do comportamento esperado pela teoria BCS. Neste trabalho será apresentado um estudo sobre a investigação de supercondutividade em dois sistemas ternários, Y-Co-C e Lu-Ni-C particularmente nos compostos YCo1-xC2 e Lu1-xThNiC2. Estes compostos cristalizam na estrutura CeNiC2 de simetria ortorrômbica é do grupo espacial 38 Amm2 que não possui centro de inversão. As técnicas de caracterização usadas neste trabalho incluem medidas de magnetização, resistividade e calor especifico como funções da temperatura, assim como magnetização como função do campo magnético aplicado. O composto YCo0.7C2 é supercondutor com Tc = 4 K e exibe um comportamento que diverge da teoria BCS. As medidas realizadas neste trabalho sugerem que este material é um forte candidato como supercondutor não convencional, onde poderia existir uma mistura de contribuições nos canais singleto e tripleto. No caso do sistema Lu1-xThxNiC2 os resultados preliminares indicam claramente supercondutividade nos compostos dopados com Th, onde a composição Lu0.6Th0.4NiC2 apresenta uma Tc= 8 K. / In recent years, non-centrosymmetric compounds have attracted a great interest because of their wealth variety of topical behaviors, induced by the lack of the inversion center on the crystallographic structure. This asymmetry leads to a strong modification in the band structures, causing an antisymmetric spin-orbit coupling which is responsible for unusual magnetic interaction mechanisms. Superconductivity in compounds whose crystal structure lacks inversion symmetry are known to display intriguing properties that deviate from conventional BCS superconducting behavior. Here we report the analysis of the ternary systems Y-Co-C and Lu-Ni-C, We focused our analysis in the intermetallic compounds YCo1-xC2 and Lu1-xThxNiC2. Magnetization, resistivity, and heat capacity measurements on polycrystalline samples of noncentrosymmetric YCo0.7C2, showing clear evidence of bulk superconductivity with a critical temperature of Tc =4 K. Interestingly the specific heat of the superconducting state deviates from conventional exponential temperature dependence, which is suggestive of possible unconventional superconducting behavior in YCo0.7C2, similar to that seen in the isostructural and isoelectronic superconductor LaNiC2. Besides, these results strongly suggest that this material is a strong candidate of multiband superconductivity. In the case of the system Lu1- xThxNiC2 our results showed a clear superconducting signal in the Th doped samples, where the composition Lu0.6Th0.4NiC2 has a Tc= 8 K.

Page generated in 0.0501 seconds