• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extraction of bitumen from Athabasca oil sand slurry using supercritical carbon Dioxide

La, Helen Unknown Date
No description available.
2

Extraction of bitumen from Athabasca oil sand slurry using supercritical carbon Dioxide

La, Helen 06 1900 (has links)
Extraction of hydrocarbons from an Athabasca oil sand slurry were conducted using supercritical carbon dioxide (SC-CO2). The oil sand was slurried to a 1:1 ratio with water and experiments were conducted using a laboratory-scale batch supercritical fluid extraction (SFE) system. Preliminary tests revealed the importance of mixing rate on hydrocarbon yields. A 2^3 factorial experiment was then conducted to test the effect of temperature, pressure, and modifier (toluene) addition on hydrocarbon extraction yield. When toluene was absent, hydrocarbon extraction yields were greater at the high temperature (60°C); however, when toluene was present, the combination of low temperature (31°C) and high pressure (24.1MPa) provided greater extraction yields. The experiment that produced the highest cumulative hydrocarbon extraction yield was analyzed by GC-FID for product-quality. Two composite samples and one time series sample revealed a carbon distribution range of the extract centering on C25, corresponding to the light gas oil range as classified in petroleum fractions. / Environmental Science
3

Ultrasound Assisted And Supercritical Carbon Dioxide Extraction Of Antioxidants From Roasted Wheat Germ

Gelmez, Nilufer 01 February 2008 (has links) (PDF)
This study covers the extraction of antioxidants from wheat germ / which is the byproduct of the flour-milling industry and a rich source of antioxidants / with Ultrasound Assisted (UAE) and Supercritical Carbon Dioxide (SC-CO2) extractions. Extraction conditions were ultrasonication time (1&ndash / 11 min), temperature (20&ndash / 60&deg / C) and ethanol level (5&ndash / 95%) for UAE, and pressure (148&ndash / 602 bar), temperature (40&ndash / 60&deg / C) and time (10&ndash / 60 min) for SC-CO2 extraction. The extraction conditions were optimized based on yield (%), total phenolic contents (TPC, mg GAE/g extract) and antioxidant activities (AA, mg scavenged DPPH&amp / #729 / /g extract) of the extracts, using Central Composite Rotatable Design. Total tocopherol contents (TTC) of the extracts were determined, as well. UAE (at 60&deg / C) with low ethanol level (~5-30%) and short times (1-3 min) provided protein rich extracts with high yield, medium TPC and AA. On the other hand, with high ethanol level (~90%) and long times (6-11 min), waxy structured extracts with low yield but high TPC and AA were obtained. SC-CO2 extraction at 442 bar, 40&ordm / C and 48 min. enabled almost 100% recovery of wheat germ oil (9% yield) but TPC and AA of the extracts were low. On the contrary, the extracts obtained at lower pressures (~150bar) and shorter times (~10 min) at 50-60&ordm / C had high TPC and AA since the oil yield was low. However, TPC and AA of these extracts were only half of those extracted by UAE. Maximum tocopherol (7.142 mg tocopherol/g extract) extraction was achieved at 240 bar, 56&ordm / C for 20 min. Both of the methods extracted high amounts of tocopherols from roasted wheat germ (SC-CO2 extraction / 0.31 mg tocopherol/g germ, UAE / 0.33 mg tocopherol/g germ) but TTC of the extracts obtained by SC-CO2 extraction was superior compared to 1.170 mg tocopherol/g extract obtained by UAE at 9 min, 58&ordm / C and 95% ethanol level. All these extracts with different characteristics have potential uses in cosmetic and food industry depending on the targeted specific application.
4

Supercritical Carbon Dioxide Extraction Of Apricot Kernel Oil

Ozkal, Sami Gokhan 01 March 2004 (has links) (PDF)
The purpose of this research was to determine the solubility of apricot (Prunus armeniaca L.) oil in supercritical carbon dioxide (SC-CO2), effects of parameters (particle size, solvent flow rate, pressure, temperature and co-solvent (ethanol) concentration) on extraction yield and to investigate the possibility of fractionation. Solubility, increased with pressure and increased with temperature above the crossover pressure, which was found between 200 and 300 bar, and decreased with temperature below the crossover pressure. Appropriate models were fitted to data. Extraction of apricot kernel oil occurred in two extraction periods as fast and slow extraction periods. Most of the oil was extracted in the fast extraction period and the oil recovered in the slow extraction period was negligible. Extraction yield increased with decrease in particle size and recovery of more than 99 % of the oil was possible if particle diameter decreased below 0.425 mm. Extraction rate increased with increase in flow rate, pressure, temperature and ethanol concentration. The volume mass transfer coefficient in the fluid phase changed between 0.6 and 3.7 /min, whereas the volume mass transfer coefficient in the solid phase changed between 0.00009 and 0.00048 /min. Extraction yield at 15 min for particle diameter smaller than 0.85 mm was formulated as a function of solvent flow rate, pressure, temperature, and ethanol concentration by using Response Surface Methodology. According to the model yield was highest (0.26 g /g) at 4 g/min flow rate, 60 oC, 450 bar and 3 % ethanol concentration. Fractionation was not possible at significant levels.

Page generated in 0.1735 seconds