• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 6
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 62
  • 62
  • 19
  • 18
  • 15
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

X-ray studies of highly magnetized neutron stars and their environs

Kumar, Harsha Sanjeev January 2012 (has links)
Supernova explosions are among the most energetic events known in the universe, leaving supernova remnants (SNRs) as their relics. The cores of massive stars collapse to form neutron stars, among the most compact and strongest magnets in the cosmos. The thesis studies a sample of such magnetic "beauties" in X-rays, the magnetars and high-magnetic field pulsars (HBPs), with the motivation to understand their evolutionary links. We also address the connection between these sources by investigating their environs through their securely associated SNRs. Magnetars have ultra-high magnetic fields B ~ 10^{14} - 10^{15} Gauss (G) and include the soft-gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs). The HBPs have magnetic fields B ~ 10^{13} - 10^{14} G, intermediate between the classical rotation-powered pulsars (B ~ 10^{12} G) and magnetars. We focussed on two HBPs: J1119-6127 and J1846-0258, with similar spin-properties and associated with the SNRs G292.2-0.5 and Kes 75, respectively. In our studies, magnetar-like behavior was discovered from the Crab-like pulsar J1846-0258, clearly establishing a connection between the HBPs and magnetars for the first time, while no such behavior has been observed from PSR J1119-6127 so far. J1119-6127's overall X-ray properties together with its compact pulsar wind nebula resemble more the classical rotation-powered pulsars. We studied two magnetars, one from each sub-class: SGR 0501+4516 and AXP 1E 1841-045. The spectral and statistical analysis of the bursts and the persistent X-ray emission properties observed from them were found consistent with the magnetar model predictions as well as those seen in other SGRs. Finally, we probed the environment of these stellar magnets by performing a detailed X-ray imaging and spatially resolved spectroscopic study of two SNRs: G292.2-0.5 and Kes 73 associated with J1119-6127 and 1E 1841-045, respectively. We found that both SNRs point to very massive progenitors (>~25 solar masses), further supporting the growing evidence for magnetars originating from massive progenitors using other multiwavelength studies.
12

Search for young galactic supernova remnants

Misanovic, Zdenka January 2001 (has links)
A sample of 9 small-diameter radio sources has been selected from the Molonglo Galactic Plane Survey (MGPS) and observed with the Australia Telescope Compact Array (ATCA) in the radio recombination line (RRL) at 5 GHz, in a search for young Galactic SNRs. Since the RRL emission is an unambiguous indicator of a thermal source, this method has been used to eliminate HII regions from the selected sample. In addition, the IRAS and MSX infrared data and spectral index measurements have been combined with the RRL studies to distinguish thermal and non-thermal sources in the selected sample. One source (G282.8-1.2) is identified here as a possible new young Galactic supernova remnant, based on its relatively weak infrared emission, steep radio spectrum and possible x-ray emission. However, the ATCA data are inconclusive and further studies are needed to confirm this result. Radio recombination line emission (H107 alpha) has been detected in 3 of the selected sources, eliminating them from the sample of SNR candidates. In addition, the parameters of the RRL emission from the identified HII regions have been used to estimate their properties. The RRL data are inconclusive for the remaining low brightness, extended sources in the sample. However, some of these sources are likely to be thermal HII regions according to the infrared and spectral index data. The selected method for distinguishing thermal and non-thermal Galactic radio sources seems promising. The selected ATCA configuration was appropriate for imaging relatively bright, compact sources, but a slightly modified observing technique is needed to successfully image low surface brightness, extended sources.
13

Energy input and mass redistribution by supernovae in the interstellar medium /

Thornton, Katsuyo Serizawa. January 1997 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Astronomy and Astrophysics, August 1997. / Includes bibliographical references. Also available on the Internet.
14

Procesos físicos en restos de supernovas y en su interacción con el medico interstelar = Physical processes in supernova remnants and in their interaction with the interstellar medium / [by] Gabriela Castelletti.

Castelletti, Gabriela. January 2005 (has links) (PDF)
Thesis (Ph.D.) - University of Buenos Aires, 2005. / PDF copy of thesis. Includes bibliographic references.
15

PROBING X-RAY ABSORPTION AND OPTICAL EXTINCTION IN THE INTERSTELLAR MEDIUM USING CHANDRA OBSERVATIONS OF SUPERNOVA REMNANTS

Foight, Dillon R., Güver, Tolga, Özel, Feryal, Slane, Patrick O. 22 July 2016 (has links)
We present a comprehensive study of interstellar X-ray extinction using the extensive Chandra supernova remnant (SNR) archive and use our results to refine the empirical relation between the hydrogen column density and optical extinction. In our analysis, we make use of the large, uniform data sample to assess various systematic uncertainties in the measurement of the interstellar X-ray absorption. Specifically, we address systematic uncertainties that originate from (i) the emission models used to fit SNR spectra; (ii) the spatial variations within individual remnants; (iii) the physical conditions of the remnant such as composition, temperature, and non-equilibrium regions; and (iv) the model used for the absorption of X-rays in the interstellar medium. Using a Bayesian framework to quantify these systematic uncertainties, and combining the resulting hydrogen column density measurements with the measurements of optical extinction toward the same remnants, we find the empirical relation N-H = (2.87 +/- 0.12) x 10(21) A(V) cm(-2), which is significantly higher than the previous measurements.
16

Core-Collapse Supernova Remnants and Interactions with Their Surroundings

Brantseg, Thomas Felton 01 July 2013 (has links)
This thesis examines three core-collapse supernova remnants (SNR) - the Cygnus Loop in the Milky Way and 0453-68.5 and 0540-69.3 in the Large Magellanic Cloud - of varying ages and in varying states of interaction with the surrounding interstellar medium (ISM), using X-ray imaging spectroscopy with Chandra and supplemental data from other wavelengths. We use results from our analysis to address three main questions. First, we examine the applicability of the common Sedov-Taylor adiabatic blast wave model to core-collapse supernovae. Second, we determine the elemental abundances around the shell of these supernova remnants to determine if the use of SNRs as a gauge of abundances in the ISM is justified. Finally, we examine the pulsar wind nebulae (PWNe) in 0453-68.5 and 0540-69.3 and search for evidence of interaction between these PWNe and their immediate surroundings. We see highly inhomogeneous ISM surrounding all three surveyed SNRs, contrary to the key assumption in the Sedov-Taylor model of a uniform surrounding medium. In all three studied SNRs, we find that shock speeds are dependent on the density of the surrounding material. As subsidiary results, we also find depleted elemental abundances of oxygen, magnesium, and silicon, relative to typical ISM, around all three studied supernova remnants. Although this subsidiary result is not conclusive, we believe that it merits a followup study. In 0540-69.3 and 0453-68.5, which contain central pulsars, we find that the explosion directionality, which can be inferred from the pulsar's proper motion relative to the SNR, is not related to the morphology of the SNR itself. We conclude from this that the asymmetric shapes common in core-collapse supernova remnants can be more a function of the complex environments surrounding the progenitors of core- collapse supernovae than of the supernova explosions themselves. Finally, we see that the PWN in 0453-68.5 shows signs of having mixed with the surrounding thermal- emitting material, while the PWN in 0540-69.3 appears to have not mixed with or interacted with the surrounding SNR material to any substantial degree. We believe that this result may indicate that the degree of interaction between a PWN and its surroundings is dependent on age and possibly shell morphology, although further study is needed.
17

Barrels, jets and smoke-rings: Understanding the bizarre shapes of radio supernova remnants

Gaensler, Bryan Malcolm January 1999 (has links)
This thesis considers the various morphologies of radio supernova remnants (SNRs), and attempts to determine whether their appearance results from the properties of the progenitor star and its supernova explosion, or from the structure of the interstellar medium (ISM) and ambient magnetic field into which a SNR consequently expands. High-resolution observations of Supernova 1987A show a young remnant whose appearance and evolution are completely dominated by the structure of its progenitor wind. A statistical study of the Galactic population of bilateral SNRs demonstrates that the symmetry axes of these remnants run parallel to the Galactic Plane. This result can be explained by the interaction of main sequence stellar wind-bubbles with the ambient magnetic field; expansion of SNRs into the resulting elongated cavities results in a bilateral appearance with the observed alignment. Radio observations of SNR G296.8-00.3 show a double-ringed morphology which is best explained by expansion either into an anisotropic main-sequence progenitor wind or into multiple cavities in the ISM. Data on SNRs G309.2-00.6 and G320.4-01.2 (MSH 15-52) make a strong case that the appearance of both remnants is significantly affected by collimated outflows from a central source; for G309.2-00.6 the source itself is not detected, but for G320.4-01.2 there is now compelling evidence that the remnant is associated with and is interacting with the young pulsar PSR B1509-58. I conclude that, while the youngest SNRs are shaped by their progenitor's circumstellar material, the appearance of most SNRs reflects the properties of the local ISM and magnetic field. Remnants which interact with an associated pulsar or binary system appear to be rare, and are easily distinguished by their unusual and distorted morphologies.
18

Gamma-ray studies of the young shell-type SNR RX J1713.7-3946

Federici, Simone January 2014 (has links)
One of the most significant current discussions in Astrophysics relates to the origin of high-energy cosmic rays. According to our current knowledge, the abundance distribution of the elements in cosmic rays at their point of origin indicates, within plausible error limits, that they were initially formed by nuclear processes in the interiors of stars. It is also believed that their energy distribution up to 1018 eV has Galactic origins. But even though the knowledge about potential sources of cosmic rays is quite poor above „ 1015 eV, that is the “knee” of the cosmic-ray spectrum, up to the knee there seems to be a wide consensus that supernova remnants are the most likely candidates. Evidence of this comes from observations of non-thermal X-ray radiation, requiring synchrotron electrons with energies up to 1014 eV, exactly in the remnant of supernovae. To date, however, there is not conclusive evidence that they produce nuclei, the dominant component of cosmic rays, in addition to electrons. In light of this dearth of evidence, γ-ray observations from supernova remnants can offer the most promising direct way to confirm whether or not these astrophysical objects are indeed the main source of cosmic-ray nuclei below the knee. Recent observations with space- and ground-based observatories have established shell-type supernova remnants as GeV-to- TeV γ-ray sources. The interpretation of these observations is however complicated by the different radiation processes, leptonic and hadronic, that can produce similar fluxes in this energy band rendering ambiguous the nature of the emission itself. The aim of this work is to develop a deeper understanding of these radiation processes from a particular shell-type supernova remnant, namely RX J1713.7–3946, using observations of the LAT instrument onboard the Fermi Gamma-Ray Space Telescope. Furthermore, to obtain accurate spectra and morphology maps of the emission associated with this supernova remnant, an improved model of the diffuse Galactic γ-ray emission background is developed. The analyses of RX J1713.7–3946 carried out with this improved background show that the hard Fermi-LAT spectrum cannot be ascribed to the hadronic emission, leading thus to the conclusion that the leptonic scenario is instead the most natural picture for the high-energy γ-ray emission of RX J1713.7–3946. The leptonic scenario however does not rule out the possibility that cosmic-ray nuclei are accelerated in this supernova remnant, but it suggests that the ambient density may not be high enough to produce a significant hadronic γ-ray emission. Further investigations involving other supernova remnants using the improved back- ground developed in this work could allow compelling population studies, and hence prove or disprove the origin of Galactic cosmic-ray nuclei in these astrophysical objects. A break- through regarding the identification of the radiation mechanisms could be lastly achieved with a new generation of instruments such as CTA. / Eine der gegenwärtigen bedeutendsten geführten Diskussionen in der Astrophysik bezieht sich auf den Ursprung der hochenergetischen Kosmischen Strahlung. Nach unserem heutigen Verständnis weist die am Ort des Ursprungs elementare Zusam- mensetzung der Kosmischen Strahlung darauf hin, dass diese zu Beginn mittels nuklearer Prozesse im Inneren von Sternen gebildet wurde. Weiterhin wird ange- nommen, dass die Kosmische Strahlung bis 1018 eV galaktischen Ursprungs ist. Auch wenn das Verständnis über die potentiellen Quellen der Kosmischen Strahlung ober- halb von 1015 eV, dem sogenannten „Knie“ des Spektrums der Kosmischen Strah- lung, lückenhaft ist, so liegt doch der Konsens vor, dass Supernovaüberreste (SNR) die wahrscheinlichsten Quellen für Energien bis 1015 eV sind. Unterstützt wird die- ser Sachverhalt durch Beobachtungen von nichtthermischer Röntgenstrahlung von SNR, deren Emission Elektronen mit Energien bis zu 1014 eV erfordern. Jedoch gibt es bis heute keinen überzeugenden Beweis, dass SNR zusätzlich zu den Elektronen auch Atomkerne, die den dominierenden Anteil in der Kosmischen Strahlung bilden, beschleunigen. Trotz fehlender überzeugender Beweise ermöglichen nun Beobachtungen von SNR im γ-Strahlungsbereich einen vielversprechenden Weg zur Aufklärung der Fra- ge, ob diese astrophysikalischen Objekte in der Tat die Hauptquelle der Kosmischen Strahlung unterhalb des Knies sind. Kürzlich durchgeführte Beobachtungen im Welt- raum und auf der Erdoberfläche haben zu der Erkenntnis geführt, dass schalenartige SNR γ-Strahlung im GeV- und TeV-Bereich emittieren. Die Interpretation dieser Beobachtungen ist jedoch schwierig, da sowohl Atomkerne als auch Elektronen im betrachteten Energiebereich zu ähnlichen γ-Emissionen führen. Dadurch wird die eindeutige Identifizierung der Emission als das Resultat hadronischer oder leptoni- scher Emissionsprozesse erschwert. Das Ziel dieser Arbeit ist es, am Beispiel des schalenartigen SNR RX J1713.7- 3946 ein tieferes Verständnis über die Strahlungsprozesse zu erhalten, indem vom γ-Weltraumteleskop Fermi durchgeführte Beobachtungen analysiert werden. Um ge- naue Spektren und die Ausdehnung der Region der Emission zu erhalten, wird ein verbessertes Modell für die diffuse galaktische γ-Hintergrundstrahlung entwickelt. Die mit diesem verbesserten Hintergrund durchgeführte Analyse von RX J1713.7- 3946 zeigt, dass das vom Fermi-Satelliten beobachtete Spektrum nicht dem hadro- nischen Szenario zugeschrieben werden kann, sodass das leptonische Szenario für die γ-Emissionen von diesem SNR verantwortlich ist. Das leptonische Szenario schließt jedoch nicht die Möglichkeit aus, dass auch Atomkerne in diesem SNR beschleu- nigt werden. Aber es deutet darauf hin, dass die umgebende Teilchendichte nicht ausreichend hoch genug ist, um zu einer signifikanten hadronischen γ-Emission zu führen. Weitere Untersuchungen, die andere SNR in Kombination mit dem hier ent- wickelten verbesserten Modell der Hintergrundstrahlung beinhalten, können Popu- lationsstudien erlauben. Dies könnte klären, ob die SNR tatsächlich die Quellen der galaktischen Kosmischen Strahlung sind. Ein Durchbruch bezüglich der Identi- fikation des Strahlungsmechanismus könnte auch durch eine neue Generation von Beobachtungsinstrumenten, wie das Cherenkov Telescope Array, erreicht werden.
19

Barrels, jets and smoke-rings: Understanding the bizarre shapes of radio supernova remnants

Gaensler, Bryan Malcolm January 1999 (has links)
This thesis considers the various morphologies of radio supernova remnants (SNRs), and attempts to determine whether their appearance results from the properties of the progenitor star and its supernova explosion, or from the structure of the interstellar medium (ISM) and ambient magnetic field into which a SNR consequently expands. High-resolution observations of Supernova 1987A show a young remnant whose appearance and evolution are completely dominated by the structure of its progenitor wind. A statistical study of the Galactic population of bilateral SNRs demonstrates that the symmetry axes of these remnants run parallel to the Galactic Plane. This result can be explained by the interaction of main sequence stellar wind-bubbles with the ambient magnetic field; expansion of SNRs into the resulting elongated cavities results in a bilateral appearance with the observed alignment. Radio observations of SNR G296.8-00.3 show a double-ringed morphology which is best explained by expansion either into an anisotropic main-sequence progenitor wind or into multiple cavities in the ISM. Data on SNRs G309.2-00.6 and G320.4-01.2 (MSH 15-52) make a strong case that the appearance of both remnants is significantly affected by collimated outflows from a central source; for G309.2-00.6 the source itself is not detected, but for G320.4-01.2 there is now compelling evidence that the remnant is associated with and is interacting with the young pulsar PSR B1509-58. I conclude that, while the youngest SNRs are shaped by their progenitor's circumstellar material, the appearance of most SNRs reflects the properties of the local ISM and magnetic field. Remnants which interact with an associated pulsar or binary system appear to be rare, and are easily distinguished by their unusual and distorted morphologies.
20

Der Supernova-Überrest North Polar Spur in der ROSAT- Himmelsdurchmusterung

Egger, Roland. January 1993 (has links)
Thesis (Doctoral)--Technische Universität München, 1993. / "August 1993." Includes bibliographical references (p. 108-111).

Page generated in 0.0412 seconds