• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 159
  • 36
  • 10
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 230
  • 78
  • 57
  • 51
  • 50
  • 42
  • 34
  • 33
  • 25
  • 24
  • 24
  • 24
  • 24
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Supernova feedback in smoothed particle hydrodynamics simulations of galaxy formation /

Stinson, Gregory, January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (p. 137-151).
32

The effects of metallicity on the brightness of Type Ia supernovae

Dupczak, Kimberly L. January 2008 (has links)
Thesis (M.S.)--Michigan State University. Astrophysics and Astronomy, 2008. / Title from PDF t.p. (Proquest, viewed on Aug. 12, 2009) Includes bibliographical references (p. 36-40).
33

The gamma-ray burst/supernova connection : a distance estimator for gamma-ray bursts, and modeling gamma-ray burst afterglows /

Reichart, Daniel Eric. January 2000 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Astronomy and Astrophysics, June 2000. / Includes bibliographical references. Also available on the Internet.
34

Physical processes in collapse driven supernova

Mayle, Ronald William. January 1985 (has links)
Thesis (Ph. D. in Physics)--University of California, Berkeley, Dec. 1985.
35

Physical conditions in the circumstellar gas surrounding supernova 1987A

Woo, Sui-chi. January 2005 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2005. / Title proper from title frame. Also available in printed format.
36

Structure and Asymmetry in Simulations of Supernova Explosions

January 2011 (has links)
abstract: There are many lines of evidence for anisotropy at all scales in the explosions of core collapse supernovae, e.g. visual inspection of the images of resolved supernova remnants, polarization measurements, velocity profiles, "natal kicks" of neutron stars, or spectroscopic observations of different regions of remnants. Theoretical stability considerations and detailed numerical simulations have shown that Rayleigh-Taylor (RT) instabilities arise in the star after the explosion, which leads to the early fragmentation of parts of the ejecta. The clumps thus created are of interest to a variety of topics, one of them being the formation environment of the solar system. There is a high probability that the solar system formed in the vicinity of a massive star that, shortly after its formation, exploded as a core collapse supernova. As argued in this thesis as well as other works, a core collapse supernova generally is a good candidate for chemically enriching the forming solar system with material. As forming proto--planetary systems in general have a high probability of being contaminated with supernova material, a method was developed for detecting tracer elements indicative supernova contamination in proto--planetary systems.The degree of the anisotropy of the supernova explosion can have dramatic effects on the mode of delivery of that material to the solar system, or proto--planetary systems in general. Thus it is of particular interest to be able to predict the structure of the supernova ejecta. Numerical simulations of the explosions of core collapse supernovae were done in 3 dimensions in order to study the formation of structure. It is found that RT instabilities result in clumps in the He- and C+O rich regions in the exploding star that are overdense by 1-2 orders of magnitude. These clumps are potential candidates for enriching the solar system with material. In the course of the further evolution of the supernova remnant, these RT clumps are likely to evolve into ejecta knots of the type observed in the Cassiopeia A supernova remnant. / Dissertation/Thesis / Ph.D. Physics 2011
37

Rapidly Interpreting UV-optical Light Curve Properties Using a “Simple” Modeling Approach

De La Rosa, Janie, Roming, Pete, Fryer, Chris 27 November 2017 (has links)
Core-collapse supernovae (CCSNe) have very distinct observational properties that depend on the composition of the progenitor star, the dynamics of the explosion mechanism, and the surrounding stellar wind environment. In recent years, due to the uncertainty behind the type of massive star that evolves into different types of core-collapse events, there has been an increase in core-collapse supernova surveys aiding the advancement of numerical supernova simulations that explore the properties of the star before the explosion. Observationally, the unpredictable nature of these events makes it difficult to identify the type of star from which the CCSNe subtype evolves, but the issue from a theoretical standpoint relies on a gap in our current understanding of the explosion mechanism. The general light curve properties of CCSNe (rise, peak, and decay) by subtype are diverse, but appear to be homogeneous within each subtype, with the exception of Type IIn.. Simplified SN models can be processed quickly in order to explore the properties of the progenitor star along with the explosion mechanism and circumstellar medium. Here, we present a suite of SN light curve models presented using a 1-temperature, homologous outflow light curve code. The SN explosion is modeled from shock breakout through the ultimate uncovering of the nickel core. We are able to rapidly explore the diversity of the SN light curves by studying the effects of various explosion and progenitor star parameters, including ejecta mass, explosion energy, shock temperature, and stellar radii using this "simple" calculation technique. Furthermore, we compare UV and optical modeled light curves to Swift UVOT IIn observations to identify the general initial conditions that enable the difference between SN 2009ip and SN 2011ht light curve properties. Our results indicate that the peak light curve is dominated by the shock temperature and explosion energy, whereas the shape depends on the mass of the ejecta and the explosion energy. Based on this modeling approach, the comparison SN light curves are a product of processes occurring after shock breakout, but before Ni-56 decay. Therefore, the energy from nickel decay does not play a major role in the light curves of these explosions. In general, the diversity between SN 2009ip and SN 2011ht can be explained by the differences in the outer ejecta mass and the explosion energy.
38

The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries

Batta, Aldo, Ramirez-Ruiz, Enrico, Fryer, Chris 01 September 2017 (has links)
High-mass X-ray binaries (HMXRBs), such as Cygnus X-1, host some of the most rapidly spinning black holes (BHs) known to date, reaching spin parameters a greater than or similar to 0.84. However, there are several effects that can severely limit the maximum BH spin parameter that could be obtained from direct collapse, such as tidal synchronization, magnetic core-envelope coupling, and mass loss. Here, we propose an alternative scenario where the BH is produced by a failed supernova (SN) explosion that is unable to unbind the stellar progenitor. A large amount of fallback material ensues, whose interaction with the secondary naturally increases its overall angular momentum content, and therefore the spin of the BH when accreted. Through SPH hydrodynamic simulations, we studied the unsuccessful explosion of an 8 M-circle dot pre-SN star in a close binary with a 12 M-circle dot companion with an orbital period of approximate to 1.2 days, finding that it is possible to obtain a BH with a high spin parameter a greater than or similar to 0.8 even when the expected spin parameter from direct collapse is a less than or similar to 0.3. This scenario also naturally explains the atmospheric metal pollution observed in HMXRB stellar companions.
39

SUPERNOVAE THEORY: STUDY OF ELECTRO-WEAK PROCESSES DURING GRAVITATIONAL COLLAPSE OF MASSIVE STARS

Fantina, A. F. 18 October 2010 (has links) (PDF)
La physique des supernovae requiert la connaissance soit des phénomènes complexes hydrodynamiques dans la matière dense (comme le transport d'énergie et des neutrinos, le traitement du choc) soit de la microphysique liée à la physique des noyaux et de la matière nucléaire dans la matière dense et chaude. Dans le cadre de la théorie des supernovae de type II, la plus part des simulations numériques qui simulent l'effondrement du coeur de supernova jusqu'à la formation et la propagation de l'onde du choc n'arrive pas à reproduire l'explosion des couches extérieures des étoiles massives. La raison pour cela pourrait être due soit aux phénomènes hydrodynamiques comme la rotation, la convection, ou bien la relativité générale, soit aux processus microphysiques qui ne sont pas très bien connus dans ce domaine de densités, températures et asymétries. Le but de ce travail de thèse est d'étudier l'effet de certaines processus microphysiques, en particulier les processus électro-faibles, qui jouent un rôle fondamental pendant l'effondrement gravitationnel, et d'analyser leur impact avec une simulation hydrodynamique. Parmi les processus microphysiques qui interviennent lors d'un effondrement de supernova, le plus important processus électro-faible est la capture électronique sur les protons libres et sur les noyaux. La capture est essentielle pour déterminer l'évolution de la fraction leptonique dans le coeur pendant la phase de neutronisation. Elle a un impact sur l'efficacité du rebond et, par conséquent, sur l'énergie de l'onde du choc. De plus, l'équation d'état de la matière et les taux de capture électronique sur les noyaux sont modifiés par la masse effective des nucléons dans les noyaux, due aux correlations à multi-corps dans le milieu dense, et à sa dépendence de la température. Après une introduction générale qui contient une revue de la phénoménologie des supernovae en appuyant sur la nécessité de la connaissance des données nucléaires pour les simulations numériques, dans la première partie de la thèse les aspects nucléaires abordés dans ce travail sont présentés. Le Chapitre 2 est constitué par une courte introduction sur les concepts importantes qui sont développés dans la Partie I et utilisés dans la Partie II de la thèse; en particulier: la théorie du champ moyen, de l'appariement en approximation BCS, la définition de masse effective en connexion avec la densité des niveaux et l'énergie de symétrie. Dans le Chapitre 3, un modèle nucléaire dont le but est d'améliorer la densité d'états autours du niveau de Fermi dans les noyaux est présenté. On a inclu dans l'approche de la fonctionnelle de la densité une masse effective piquée en surface qui simule certains effets au delà de Hartree-Fock. Cela a été possible en ajoutant un terme à la fonctionnelle de Skyrme qui puisse reproduire l'augmentation de la masse effective et de la densité d'états à la surface de Fermi, comme attendu par les données expérimentales. On a étudié l'impact de ce nouveau terme sur les propriétés de champ moyen dans les noyaux 40Ca et 208Pb, et sur les propriétés d'appariement à température nulle et à température finie dans le noyau 120Sn. On a aussi commencé des nouveaux calculs pour évaluer la dépendance en température de la masse effective dans l'approche microphysique de la RPA, dont les résultats préliminaires sont montrés dans l'Appendice D. Cette partie nucléaire est complétée par une appendice (Appendice B), qui donne les détails des paramétrisations de Skyrme utilisées dans le texte, et par l'Appendice C qui analyse la dépendence de la température de la masse effective en connection avec le paramètre de densité des niveaux qui peut être extrait par les expériences de physique nucléaire. La deuxième partie de la thèse est dediée aux modèles de supernova sur lequels j'ai travaillé. On présente les résultats obtenus avec un approche à une zone, et deux modèles monodimensionnels en symétrie sphérique: newtonien et en relativité générale. Bien que un modèle en symétrie sphérique n'est pas capable de saisir tous les aspects complexes du phénomène de supernova, et les observations des vitesses des étoiles à neutrons ou des inhomogéneitées des éjecta requièrent l'inclusion dans les simulations des effets multidimensionnels, un modèle monodimensionnel permet un premier étude détaillé de l'impact des différentes données microphysiques en focalisant l'analyse sur l'incertitude des données de physique nucléaire. Après une introduction générale faite dans le Chapitre 4 qui décrit les principals ingrédients des différentes simulations numériques (comme le traitement du choc et le transport de neutrinos), les codes sur lequels j'ai travaillé sont illustrés en détail. Le Chapitre 5 présente un modèle à une zone, où le coeur de supernova a été approximé par une sphère de densité homogène. Bien que ceci est un modèle simple, il est capable de reproduire de façon qualitative (et quantitative dans ses ordres de grandeur) la "trajectoire" d'effondrement (i.e. l'évolution des grandeurs thérmodynamiques le long de l'effondrement). Dans ce cadre, on a évalué l'impact de la dépendance en température de l'énergie de symétrie (via la dépendance en température de la masse effective) dans la dymanique du collapse, et on a montré que, en incluant cette dépendance en température, la deleptonisation dans le coeur est systématiquement réduite et l'effet sur l'énergie du choc est non-négligeable. Ces résultats nous ont conduit à effectuer des simulations plus réalistes, en employant un code monodimensionnel newtonien en symétrie sphérique, avec transport des neutrinos. La description de ce code, développé par P. Blottiau et Ph. Mellor au CEA,DAM,DIF, est l'object du Chapitre 6. On a inclu dans l'équation d'état dérivée par Bethe et al.(BBAL), aussi utilisée dans le code à une zone, la même paramétrisation de la masse effective, qui agit à la fois sur les Q-valeurs des taux de capture et sur l'équation d'état du système. Les résultats de ces simulations ont confirmés ceux qui avaient été obtenus avec le code one-zone, c'est à dire la reduction systématique de la deleptonisation dans le coeur si on inclue la dépendance en température de l'énergie de symétrie. De plus, on en a estimé l'impact sur la position de la formation de l'onde du choc, qui est déplacée vers l'extérieur d'une quantité non-négligeable. On a aussi travaillé pour inclure dans le code l'équation d'état plus récente de Lattimer et Swesty. Enfin, le Chapitre 7 décrit un code, à l'origine développé par le groupe de Valence, écrit en rélativité générale et qui utilise un approche moderne pour le traitment du choc (la "capture du choc"). Bien que ce modèle ne contient pas le transport des neutrinos, l'équation de l'évolution de la fraction neutrinique est déjà écrite avec un schema multi-groupe qui permet une première analyse spectrale des neutrinos. On étudie l'effet de l'équation d'état dans la dynamique d'effondrement ainsi que l'impact de la capture électronique. Une versione newtonienne a été aussi implémentée et les résultats obtenus sont en accord avec la littérature. Cette partie est complétée par plusieurs appendices. Dans l'Appendice A, les différentes unités de mesure employées dans les codes sont listées. Les Appendices E et F sont dédiées à deux équations d'état: la prémière est celle d'un gas de neutrons, protons et électrons; la deuxième décrit l'équations d'état de Lattimer et Swesty et les modifications qu'on a apportés pour corriger une erreur dans la définition de l'énergie de liaison des particules alpha et pour étendre l'équation d'état à des densités plus basses. Enfin, l'Appendice G détaille les processus des neutrinos implémentés dans les simulations. Le développement des codes numériques pour simuler l'effondrement gravitationnel de supernova effectué dans ce travail de thèse est apte pour tester les propriétés de la matière et peux constituer un outil pour des projets de recherche futurs.
40

SPIRITS 15c and SPIRITS 14buu: Two Obscured Supernovae in the Nearby Star-forming Galaxy IC 2163

Jencson, Jacob E., Kasliwal, Mansi M., Johansson, Joel, Contreras, Carlos, Castellón, Sergio, Bond, Howard E., Monson, Andrew J., Masci, Frank J., Cody, Ann Marie, Andrews, Jennifer E., Bally, John, Cao, Yi, Fox, Ori D., Gburek, Timothy, Gehrz, Robert D., Green, Wayne, Helou, George, Hsiao, Eric, Morrell, Nidia, Phillips, Mark, Prince, Thomas A., Simcoe, Robert A., Smith, Nathan, Tinyanont, Samaporn, Williams, Robert 15 March 2017 (has links)
SPitzer InfraRed Intensive Transients Survey-SPIRITS-is an ongoing survey of nearby galaxies searching for infrared (IR) transients with Spitzer/IRAC. We present the discovery and follow-up observations of one of our most luminous (M-[4.5] = -17.1 +/- 0.4 mag, Vega) and reddest ([3.6] - [4.5] = 3.0 +/- 0.2 mag) transients, SPIRITS 15c. The transient was detected in a dusty spiral arm of IC. 2163 (D approximate to 35.5 Mpc). Pre-discovery ground-based imaging revealed an associated, shorter-duration transient in the optical and near-IR (NIR). NIR spectroscopy showed a broad (approximate to 8400 km s(-1)), double-peaked emission line of He I at 1.083 mu m, indicating an explosive origin. The NIR spectrum of SPIRITS 15c is similar to that of the Type IIb SN 2011dh at a phase of approximate to 200 days. Assuming an A(V) = 2.2 mag of extinction in SPIRITS 15c provides a good match between their optical light curves. The NIR light curves, however, show some minor discrepancies when compared with SN 2011dh, and the extreme [3.6]-[4.5] color has not been previously observed for any SN IIb. Another luminous (M-4.5 = -16.1 +/- 0.4 mag) event, SPIRITS 14buu, was serendipitously discovered in the same galaxy. The source displays an optical plateau lasting greater than or similar to 80 days, and we suggest a scenario similar to the low-luminosity Type. IIP SN 2005cs obscured by A(V) approximate to 1.5 mag. Other classes of IR-luminous transients can likely be ruled out in both cases. If both events are indeed SNe, this may suggest that greater than or similar to 18% of nearby core-collapse SNe are missed by currently operating optical surveys.

Page generated in 0.0473 seconds