Spelling suggestions: "subject:"supersonductors"" "subject:"superconductors""
1 |
Optimisation de détecteurs pour l'astronomie du rayonnement X : développement de jonctions supraconductrices pour l'isolation thermique dans les interconnexions / microcalorimètre,rayonnement X,Conductivité thermique aux interfaces,diaphonie,basses températures,Goupy, Johannes 13 July 2012 (has links)
L’avenir des nouvelles caméras embarquées pour l’astrophysique spatiale semble passer par unaccroissement du nombre de pixels et un fonctionnement à très basse température (en dessous de 0,1 K).Avec cette évolution, le nombre important de fils en sortie du détecteur refroidi représente souvent lacharge thermique prédominante sur la source froide (cryostat).Dans ce contexte, l’isolation thermique entre les différents circuits de détection est un point crucial pources caméras. Une brique technologique innovante a été développée pour apporter une solution présentantune excellente conduction électrique couplée à une grande isolation thermique. Cette innovation,protégée par un brevet, permet de résoudre cet apparent paradoxe. La solution proposée consiste enl’empilement d’un grand nombre de couches minces de matériaux supraconducteurs dans lesinterconnexions.La résistance thermique à chaque interface est dépendante des propriétés élastiques des matériaux,de la qualité des interfaces et de la température à laquelle le système fonctionne. A très basse température,le modèle AMM, couplé aux mesures des caractéristiques des matériaux composants la multicouche,permettent une estimation théorique de la résistance thermique pour une interface. Les mesures effectuéesavec les liaisons supraconductrices à forte résistivité thermique concordent avec les estimationsthéoriques. Nous avons ainsi pu mesurer des résistances thermiques de l’ordre de 3,3.105 K/W à 200 mKpour une multicouche composée d’une succession (62 interfaces) de couches minces de nitrure de titaneet de niobium sur une surface de 16 mm2. Dans les conditions d’utilisation prévues pour une camérarayons X de 4000 pixels microcalorimétriques, l’utilisation de cette brique technologique devrait assurerune charge thermique sur la source froide (à 50 mK) très inférieure au μW pour plus de 8000 pointsde contact. Ce dispositif pourra être utilisé à l’avenir dans nombre de projets cryogéniques, lorsqu’une excellenteisolation thermique associée à une excellente conduction électrique sera recherchée. / Future of the next camera onboard space observatories implies a major enhancement in number of pixelsand a very low operative temperature (below 0.1 K). In this evolution, the large number of output wiresfrom the cool detector is often responsible of the most important thermal load onto the cold bath(cryostat).In this context, the thermal insulation between the different detection circuits is the bottleneck for thesecameras. An innovative technological component, protected by a patent, has been developed to tackle thisproblem. This device has both an excellent electrical resistivity and a very high thermal resistivity.The proposed solution is a stack of thin superconducting layers at electrical interconnections.The thermal resistance at each interface relies on the elastic properties of the materials used, the quality ofthe interfaces and temperature. The AMM model used in conjunction with the measured materialcharacteristics allows a theorical estimation of the thermal resistance per interface. The measurementsundertaken with superconducting connections with very high thermal resistivity are very well describedby this AMM model. We have measured thermal resistances as high as 3.3 105 K/W @ 200 mKfor a multilayer of 62 interfaces built with titaniun nitride and niobium alternatively on a 16 mm2 array.In the conditions foreseen for a 4000 micro-calorimeters camera operating at 50 mK in X-rays,this multilayer technique should allow a thermal load onto the cold bath that is much lower that 1 mWfor more than 8000 contacts.
|
Page generated in 0.0397 seconds