• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 557
  • 295
  • 86
  • 38
  • 15
  • 11
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 1149
  • 781
  • 396
  • 285
  • 269
  • 269
  • 196
  • 194
  • 180
  • 140
  • 116
  • 116
  • 114
  • 112
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Machine Learning Approach on Evaluating Predictive Factors of Fall-Related Injuries

Ateeq, Sameen January 2018 (has links)
According to the Public Health Agency of Canada, falls account for 95% of all hip fractures in Canada; 20% of fall-related injury cases end in death. This thesis evaluates the predictive power of many variables to predict fall-related injuries. The dataset chosen was CCHS which is high dimensional and diverse. The use of Principal Component Analysis (PCA) and random forest was employed to determine the highest priority risk factors to include in the predictive model. The results show that it is possible to predict fall-related injuries with a sensitivity of 80% or higher using four predictors (frequency of consultations with medical doctor, food and vegetable consumption, height and monthly physical activity level of over 15 minutes). Alternatively, the same sensitivity can be reached using age, frequency of walking for exercise per 3 months, alcohol consumption and personal income. None of the predictive models reached an accuracy of 70% or higher. Further work in studying nutritional diets that offer protection from incurring a fall related injury are also recommended. Since the predictors are behavioral determinants of health and have a high sensitivity but a low accuracy, population health interventions are recommended rather than individual-level interventions. Suggestions to improve accuracy of built models are also proposed. / Thesis / Master of Science (MSc)
42

Benchmarking Methods For Predicting Phenotype Gene Associations

Tyagi, Tanya 16 September 2020 (has links)
Assigning human genes to diseases and related phenotypes is an important topic in modern genomics. Human Phenotype Ontology (HPO) is a standardized vocabulary of phenotypic abnormalities that occur in human diseases. Computational methods such as label-propagation and supervised-learning address challenges posed by traditional approaches such as manual curation to link genes to phenotypes in the HPO. It is only in recent years that computational methods have been applied in a network-based approach for predicting genes to disease-related phenotypes. In this thesis, we present an extensive benchmarking of various computational methods for the task of network-based gene classification. These methods are evaluated on multiple protein interaction networks and feature representations. We empirically evaluate the performance of multiple prediction tasks using two evaluation experiments: cross-fold validation and the more stringent temporal holdout. We demonstrate that all of the prediction methods considered in our benchmarking analysis have similar performance, with each of the methods outperforming a random predictor. / Master of Science / For many years biologists have been working towards studying diseases, characterizing dis- ease history and identifying what factors and genetic variants lead to diseases. Such studies are critical to working towards the advanced prognosis of diseases and being able to iden- tify targeted treatment plans to cure diseases. An important characteristic of diseases is that they can be expressed by a set of phenotypes. Phenotypes are defined as observable characteristics or traits of an organism, such as height and the color of the eyes and hair. In the context of diseases, the phenotypes that describe diseases are referred to as clinical phenotypes, with some examples being short stature, abnormal hair pattern, etc. Biologists have identified the importance of deep phenotyping, which is defined as a concise analysis that gathers information about diseases and their observed traits in humans, in finding genetic variants underlying human diseases. We make use of the Human Phenotype Ontology (HPO), a standardized vocabulary of phenotypic abnormalities that occur in human diseases. The HPO provides relationships between phenotypes as well as associations between phenotypes and genes. In our study, we perform a systematic benchmarking to evaluate different types of computational approaches for the task of phenotype-gene prediction, across multiple molecular networks using various feature representations and for multiple evaluation strategies.
43

Semi-Supervised Anomaly Detection and Heterogeneous Covariance Estimation for Gaussian Processes

Crandell, Ian C. 12 December 2017 (has links)
In this thesis, we propose a statistical framework for estimating correlation between sensor systems measuring diverse physical phenomenon. We consider systems that measure at different temporal frequencies and measure responses with different dimensionalities. Our goal is to provide estimates of correlation between all pairs of sensors and use this information to flag potentially anomalous readings. Our anomaly detection method consists of two primary components: dimensionality reduction through projection and Gaussian process (GP) regression. We use non-metric multidimensional scaling to project a partially observed and potentially non-definite covariance matrix into a low dimensional manifold. The projection is estimated in such a way that positively correlated sensors are close to each other and negatively correlated sensors are distant. We then fit a Gaussian process given these positions and use it to make predictions at our observed locations. Because of the large amount of data we wish to consider, we develop methods to scale GP estimation by taking advantage of the replication structure in the data. Finally, we introduce a semi-supervised method to incorporate expert input into a GP model. We are able to learn a probability surface defined over locations and responses based on sets of points labeled by an analyst as either anomalous or nominal. This allows us to discount the influence of points resembling anomalies without removing them based on a threshold. / Ph. D.
44

Role of semantic indexing for text classification

Sani, Sadiq January 2014 (has links)
The Vector Space Model (VSM) of text representation suffers a number of limitations for text classification. Firstly, the VSM is based on the Bag-Of-Words (BOW) assumption where terms from the indexing vocabulary are treated independently of one another. However, the expressiveness of natural language means that lexically different terms often have related or even identical meanings. Thus, failure to take into account the semantic relatedness between terms means that document similarity is not properly captured in the VSM. To address this problem, semantic indexing approaches have been proposed for modelling the semantic relatedness between terms in document representations. Accordingly, in this thesis, we empirically review the impact of semantic indexing on text classification. This empirical review allows us to answer one important question: how beneficial is semantic indexing to text classification performance. We also carry out a detailed analysis of the semantic indexing process which allows us to identify reasons why semantic indexing may lead to poor text classification performance. Based on our findings, we propose a semantic indexing framework called Relevance Weighted Semantic Indexing (RWSI) that addresses the limitations identified in our analysis. RWSI uses relevance weights of terms to improve the semantic indexing of documents. A second problem with the VSM is the lack of supervision in the process of creating document representations. This arises from the fact that the VSM was originally designed for unsupervised document retrieval. An important feature of effective document representations is the ability to discriminate between relevant and non-relevant documents. For text classification, relevance information is explicitly available in the form of document class labels. Thus, more effective document vectors can be derived in a supervised manner by taking advantage of available class knowledge. Accordingly, we investigate approaches for utilising class knowledge for supervised indexing of documents. Firstly, we demonstrate how the RWSI framework can be utilised for assigning supervised weights to terms for supervised document indexing. Secondly, we present an approach called Supervised Sub-Spacing (S3) for supervised semantic indexing of documents. A further limitation of the standard VSM is that an indexing vocabulary that consists only of terms from the document collection is used for document representation. This is based on the assumption that terms alone are sufficient to model the meaning of text documents. However for certain classification tasks, terms are insufficient to adequately model the semantics needed for accurate document classification. A solution is to index documents using semantically rich concepts. Accordingly, we present an event extraction framework called Rule-Based Event Extractor (RUBEE) for identifying and utilising event information for concept-based indexing of incident reports. We also demonstrate how certain attributes of these events e.g. negation, can be taken into consideration to distinguish between documents that describe the occurrence of an event, and those that mention the non-occurrence of that event.
45

A Study of Emphasis Placed on Supervisory Practices in the Supervision of English

Dillingham, Faye Elizabeth 01 1900 (has links)
The problem of this study was the amount of emphasis placed on various supervisory practices in the supervision of English. The first purpose was to compare the emphasis placed on supervisory practices in the supervision of English in selected Texas secondary schools with the emphasis placed on the same supervisory practices in the supervision of English in selected school systems of the nation. The second purpose was to compare the emphasis placed on supervisory practices in the supervision of English in selected Texas secondary schools with the emphasis a group of educational specialists believed should be placed on the supervisory practices. The third purpose was to compare the emphasis placed on supervisory practices in the supervision of English in selected school systems of the nation with the emphasis a group of educational specialists believed should be placed on the supervisory practices.
46

Supervision Beyond Manual Annotations for Learning Visual Representations

Doersch, Carl 01 April 2016 (has links)
For both humans and machines, understanding the visual world requires relating new percepts with past experience. We argue that a good visual representation for an image should encode what makes it similar to other images, enabling the recall of associated experiences. Current machine implementations of visual representations can capture some aspects of similarity, but fall far short of human ability overall. Even if one explicitly labels objects in millions of images to tell the computer what should be considered similar—a very expensive procedure—the labels still do not capture everything that might be relevant. This thesis shows that one can often train a representation which captures similarity beyond what is labeled in a given dataset. That means we can begin with a dataset that has uninteresting labels, or no labels at all, and still build a useful representation. To do this, we propose to using pretext tasks: tasks that are not useful in and of themselves, but serve as an excuse to learn a more general-purpose representation. The labels for a pretext task can be inexpensive or even free. Furthermore, since this approach assumes training labels differ from the desired outputs, it can handle output spaces where the correct answer is ambiguous, and therefore impossible to annotate by hand. The thesis explores two broad classes of supervision. The first isweak image-level supervision, which is exploited to train mid-level discriminative patch classifiers. For example, given a dataset of street-level imagery labeled only with GPS coordinates, patch classifiers are trained to differentiate one specific geographical region (e.g. the city of Paris) from others. The resulting classifiers each automatically collect and associate a set of patches which all depict the same distinctive architectural element. In this way, we can learn to detect elements like balconies, signs, and lamps without annotations. The second type of supervision requires no information about images other than the pixels themselves. Instead, the algorithm is trained to predict the context around image patches. The context serves as a sort of weak label: to predict well, the algorithm must associate similar-looking patches which also have similar contexts. After training, the feature representation learned using this within-image context indeed captures visual similarity across images, which ultimately makes it useful for real tasks like object detection and geometry estimation.
47

Semantic Mapping using Virtual Sensors and Fusion of Aerial Images with Sensor Data from a Ground Vehicle

Persson, Martin January 2008 (has links)
<p>In this thesis, semantic mapping is understood to be the process of putting a tag or label on objects or regions in a map. This label should be interpretable by and have a meaning for a human. The use of semantic information has several application areas in mobile robotics. The largest area is in human-robot interaction where the semantics is necessary for a common understanding between robot and human of the operational environment. Other areas include localization through connection of human spatial concepts to particular locations, improving 3D models of indoor and outdoor environments, and model validation.</p><p>This thesis investigates the extraction of semantic information for mobile robots in outdoor environments and the use of semantic information to link ground-level occupancy maps and aerial images. The thesis concentrates on three related issues: i) recognition of human spatial concepts in a scene, ii) the ability to incorporate semantic knowledge in a map, and iii) the ability to connect information collected by a mobile robot with information extracted from an aerial image.</p><p>The first issue deals with a vision-based virtual sensor for classification of views (images). The images are fed into a set of learned virtual sensors, where each virtual sensor is trained for classification of a particular type of human spatial concept. The virtual sensors are evaluated with images from both ordinary cameras and an omni-directional camera, showing robust properties that can cope with variations such as changing season.</p><p>In the second part a probabilistic semantic map is computed based on an occupancy grid map and the output from a virtual sensor. A local semantic map is built around the robot for each position where images have been acquired. This map is a grid map augmented with semantic information in the form of probabilities that the occupied grid cells belong to a particular class. The local maps are fused into a global probabilistic semantic map covering the area along the trajectory of the mobile robot.</p><p>In the third part information extracted from an aerial image is used to improve the mapping process. Region and object boundaries taken from the probabilistic semantic map are used to initialize segmentation of the aerial image. Algorithms for both local segmentation related to the borders and global segmentation of the entire aerial image, exemplified with the two classes ground and buildings, are presented. Ground-level semantic information allows focusing of the segmentation of the aerial image to desired classes and generation of a semantic map that covers a larger area than can be built using only the onboard sensors.</p>
48

Domain knowledge, uncertainty, and parameter constraints

Mao, Yi 24 August 2010 (has links)
No description available.
49

Semantic mapping using virtual sensors and fusion of aerial images with sensor data from a ground vehicle

Persson, Martin January 2008 (has links)
In this thesis, semantic mapping is understood to be the process of putting a tag or label on objects or regions in a map. This label should be interpretable by and have a meaning for a human. The use of semantic information has several application areas in mobile robotics. The largest area is in human-robot interaction where the semantics is necessary for a common understanding between robot and human of the operational environment. Other areas include localization through connection of human spatial concepts to particular locations, improving 3D models of indoor and outdoor environments, and model validation. This thesis investigates the extraction of semantic information for mobile robots in outdoor environments and the use of semantic information to link ground-level occupancy maps and aerial images. The thesis concentrates on three related issues: i) recognition of human spatial concepts in a scene, ii) the ability to incorporate semantic knowledge in a map, and iii) the ability to connect information collected by a mobile robot with information extracted from an aerial image. The first issue deals with a vision-based virtual sensor for classification of views (images). The images are fed into a set of learned virtual sensors, where each virtual sensor is trained for classification of a particular type of human spatial concept. The virtual sensors are evaluated with images from both ordinary cameras and an omni-directional camera, showing robust properties that can cope with variations such as changing season. In the second part a probabilistic semantic map is computed based on an occupancy grid map and the output from a virtual sensor. A local semantic map is built around the robot for each position where images have been acquired. This map is a grid map augmented with semantic information in the form of probabilities that the occupied grid cells belong to a particular class. The local maps are fused into a global probabilistic semantic map covering the area along the trajectory of the mobile robot. In the third part information extracted from an aerial image is used to improve the mapping process. Region and object boundaries taken from the probabilistic semantic map are used to initialize segmentation of the aerial image. Algorithms for both local segmentation related to the borders and global segmentation of the entire aerial image, exemplified with the two classes ground and buildings, are presented. Ground-level semantic information allows focusing of the segmentation of the aerial image to desired classes and generation of a semantic map that covers a larger area than can be built using only the onboard sensors.
50

Supervised Classification Leveraging Refined Unlabeled Data

Bocancea, Andreea January 2015 (has links)
This thesis focuses on how unlabeled data can improve supervised learning classi-fiers in all contexts, for both scarce to abundant label situations. This is meant toaddress the limitations within supervised learning with regards to label availability.Extending the training set with unlabeled data can overcome issues such as selec-tion bias, noise and insufficient data. Based on the overall data distribution andthe initial set of labels, semi-supervised methods provide labels for additional datapoints. The semi-supervised approaches considered in this thesis belong to one ofthe following categories: transductive SVMs, Cluster-then-Label and graph-basedtechniques. Further, we evaluate the behavior of: Logistic regression, Single layerperceptron, SVM and Decision trees. By learning on the extended training set,supervised classifiers are able to generalize better. Based on the results, this the-sis recommends data-processing and algorithmic solutions appropriate to real-worldsituations.

Page generated in 0.0457 seconds