• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 378
  • 64
  • 43
  • 26
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 606
  • 606
  • 276
  • 211
  • 208
  • 148
  • 133
  • 125
  • 92
  • 91
  • 88
  • 85
  • 78
  • 76
  • 75
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

New Directions in Gaussian Mixture Learning and Semi-supervised Learning

Sinha, Kaushik 01 November 2010 (has links)
No description available.
62

Semi-supervised Information Fusion for Clustering, Classification and Detection Applications

Li, Huaying January 2017 (has links)
Information fusion techniques have been widely applied in many applications including clustering, classification, detection and etc. The major objective is to improve the performance using information derived from multiple sources as compared to using information obtained from any of the sources individually. In our previous work, we demonstrated the performance improvement of Electroencephalography(EEG) based seizure detection using information fusion. In the detection problem, the optimal fusion rule is usually derived under the assumption that local decisions are conditionally independent given the hypotheses. However, due to the fact that local detectors observe the same phenomenon, it is highly possible that local decisions are correlated. To address the issue of correlation, we implement the fusion rule sub-optimally by first estimating the unknown parameters under one of the hypotheses and then using them as known parameters to estimate the rest of unknown parameters. In the aforementioned scenario, the hypotheses are uniquely defined, i.e., all local detectors follow the same labeling convention. However, in certain applications, the regions of interest (decisions, hypotheses, clusters and etc.) are not unique, i.e., may vary locally (from sources to sources). In this case, information fusion becomes more complicated. Historically, this problem was first observed in classification and clustering. In classification applications, the category information is pre-defined and training data is required. Therefore, a classification problem can be viewed as a detection problem by considering the pre-defined classes as the hypotheses in detection. However, information fusion in clustering applications is more difficult due to the lack of prior information and the correspondence problem caused by symbolic cluster labels. In the literature, information fusion in clustering problem is usually referred to as clustering ensemble problem. Most of the existing clustering ensemble methods are unsupervised. In this thesis, we proposed two semi-supervised clustering ensemble algorithms (SEA). Similar to existing ensemble methods, SEA consists of two major steps: the generation and fusion of base clusterings. Analogous to distributed detection, we propose a distributed clustering system which consists of a base clustering generator and a decision fusion center. The role of the base clustering generator is to generate multiple base clusterings for the given data set. The role of the decision fusion center is to combine all base clusterings into a single consensus clustering. Although training data is not required by conventional clustering algorithms (usually unsupervised), in many applications expert opinions are always available to label a small portion of data observations. These labels can be utilized as the guidance information in the fusion process. Therefore, we design two operational modes for the fusion center according to the absence or presence of the training data. In the unsupervised mode, any existing unsupervised clustering ensemble methods can be implemented as the fusion rule. In the semi-supervised mode, the proposed semi-supervised clustering ensemble methods can be implemented. In addition, a parallel distributed clustering system is also proposed to reduce the computational times of clustering high-volume data sets. Moreover, we also propose a new cluster detection algorithm based on SEA. It is implemented in the system to provide feedback information. When data observations from a new class (other than existing training classes) are detected, signal is sent out to request new training data or switching from the semi-supervised mode to the unsupervised mode. / Thesis / Doctor of Philosophy (PhD)
63

Discriminant Analysis for Longitudinal Data

Matira, Kevin January 2017 (has links)
Various approaches for discriminant analysis of longitudinal data are investigated, with some focus on model-based approaches. The latter are typically based on the modi ed Cholesky decomposition of the covariance matrix in a Gaussian mixture; however, non-Gaussian mixtures are also considered. Where applicable, the Bayesian information criterion is used to select the number of components per class. The various approaches are demonstrated on real and simulated data. / Thesis / Master of Science (MSc)
64

Self-Supervised Remote Sensing Image Change Detection and Data Fusion

Chen, Yuxing 27 November 2023 (has links)
Self-supervised learning models, which are called foundation models, have achieved great success in computer vision. Meanwhile, the limited access to labeled data has driven the development of self-supervised methods in remote sensing tasks. In remote sensing image change detection, the generative models are extensively utilized in unsupervised binary change detection tasks, while they overly focus on pixels rather than on abstract feature representations. In addition, the state-of-the-art satellite image time series change detection approaches fail to effectively leverage the spatial-temporal information of image time series or generalize well to unseen scenarios. Similarly, in the context of multimodal remote sensing data fusion, the recent successes of deep learning techniques mainly focus on specific tasks and complete data fusion paradigms. These task-specific models lack of generalizability to other remote sensing tasks and become overfitted to the dominant modalities. Moreover, they fail to handle incomplete modalities inputs and experience severe degradation in downstream tasks. To address these challenges associated with individual supervised learning models, this thesis presents two novel contributions to self-supervised learning models on remote sensing image change detection and multimodal remote sensing data fusion. The first contribution proposes a bi-temporal / multi-temporal contrastive change detection framework, which employs contrastive loss on image patches or superpixels to get fine-grained change maps and incorporates an uncertainty method to enhance the temporal robustness. In the context of satellite image time series change detection, the proposed approach improves the consistency of pseudo labels through feature tracking and tackles the challenges posed by seasonal changes in long-term remote sensing image time series using supervised contrastive loss and the random walk loss in ConvLSTM. The second contribution develops a self-supervised multimodal RS data fusion framework, with a specific focus on addressing the incomplete multimodal RS data fusion challenges in downstream tasks. Within this framework, multimodal RS data are fused by applying a multi-view contrastive loss at the pixel level and reconstructing each modality using others in a generative way based on MultiMAE. In downstream tasks, the proposed approach leverages a random modality combination training strategy and an attention block to enable fusion across modal-incomplete inputs. The thesis assesses the effectiveness of the proposed self-supervised change detection approach on single-sensor and cross-sensor datasets of SAR and multispectral images, and evaluates the proposed self-supervised multimodal RS data fusion approach on the multimodal RS dataset with SAR, multispectral images, DEM and also LULC maps. The self-supervised change detection approach demonstrates improvements over state-of-the-art unsupervised change detection methods in challenging scenarios involving multi-temporal and multi-sensor RS image change detection. Similarly, the self-supervised multimodal remote sensing data fusion approach achieves the best performance by employing an intermediate fusion strategy on SAR and optical image pairs, outperforming existing unsupervised data fusion approaches. Notably, in incomplete multimodal fusion tasks, the proposed method exhibits impressive performance on all modal-incomplete and single modality inputs, surpassing the performance of vanilla MultiViT, which tends to overfit on dominant modality inputs and fails in tasks with single modality inputs.
65

Design Optimization of Fuzzy Logic Systems

Dadone, Paolo 29 May 2001 (has links)
Fuzzy logic systems are widely used for control, system identification, and pattern recognition problems. In order to maximize their performance, it is often necessary to undertake a design optimization process in which the adjustable parameters defining a particular fuzzy system are tuned to maximize a given performance criterion. Some data to approximate are commonly available and yield what is called the supervised learning problem. In this problem we typically wish to minimize the sum of the squares of errors in approximating the data. We first introduce fuzzy logic systems and the supervised learning problem that, in effect, is a nonlinear optimization problem that at times can be non-differentiable. We review the existing approaches and discuss their weaknesses and the issues involved. We then focus on one of these problems, i.e., non-differentiability of the objective function, and show how current approaches that do not account for non-differentiability can diverge. Moreover, we also show that non-differentiability may also have an adverse practical impact on algorithmic performances. We reformulate both the supervised learning problem and piecewise linear membership functions in order to obtain a polynomial or factorable optimization problem. We propose the application of a global nonconvex optimization approach, namely, a reformulation and linearization technique. The expanded problem dimensionality does not make this approach feasible at this time, even though this reformulation along with the proposed technique still bears a theoretical interest. Moreover, some future research directions are identified. We propose a novel approach to step-size selection in batch training. This approach uses a limited memory quadratic fit on past convergence data. Thus, it is similar to response surface methodologies, but it differs from them in the type of data that are used to fit the model, that is, already available data from the history of the algorithm are used instead of data obtained according to an experimental design. The step-size along the update direction (e.g., negative gradient or deflected negative gradient) is chosen according to a criterion of minimum distance from the vertex of the quadratic model. This approach rescales the complexity in the step-size selection from the order of the (large) number of training data, as in the case of exact line searches, to the order of the number of parameters (generally lower than the number of training data). The quadratic fit approach and a reduced variant are tested on some function approximation examples yielding distributions of the final mean square errors that are improved (i.e., skewed toward lower errors) with respect to the ones in the commonly used pattern-by-pattern approach. Moreover, the quadratic fit is also competitive and sometimes better than the batch training with optimal step-sizes, thus showing an improved performance of this approach. The quadratic fit approach is also tested in conjunction with gradient deflection strategies and memoryless variable metric methods, showing errors smaller by 1 to 7 orders of magnitude. Moreover, the convergence speed by using either the negative gradient direction or a deflected direction is higher than that of the pattern-by-pattern approach, although the computational cost of the algorithm per iteration is moderately higher than the one of the pattern-by-pattern method. Finally, some directions for future research are identified. / Ph. D.
66

On discriminative semi-supervised incremental learning with a multi-view perspective for image concept modeling

Byun, Byungki 17 January 2012 (has links)
This dissertation presents the development of a semi-supervised incremental learning framework with a multi-view perspective for image concept modeling. For reliable image concept characterization, having a large number of labeled images is crucial. However, the size of the training set is often limited due to the cost required for generating concept labels associated with objects in a large quantity of images. To address this issue, in this research, we propose to incrementally incorporate unlabeled samples into a learning process to enhance concept models originally learned with a small number of labeled samples. To tackle the sub-optimality problem of conventional techniques, the proposed incremental learning framework selects unlabeled samples based on an expected error reduction function that measures contributions of the unlabeled samples based on their ability to increase the modeling accuracy. To improve the convergence property of the proposed incremental learning framework, we further propose a multi-view learning approach that makes use of multiple features such as color, texture, etc., of images when including unlabeled samples. For robustness to mismatches between training and testing conditions, a discriminative learning algorithm, namely a kernelized maximal- figure-of-merit (kMFoM) learning approach is also developed. Combining individual techniques, we conduct a set of experiments on various image concept modeling problems, such as handwritten digit recognition, object recognition, and image spam detection to highlight the effectiveness of the proposed framework.
67

Learning with Limited Supervision by Input and Output Coding

Zhang, Yi 01 May 2012 (has links)
In many real-world applications of supervised learning, only a limited number of labeled examples are available because the cost of obtaining high-quality examples is high. Even with a relatively large number of labeled examples, the learning problem may still suffer from limited supervision as the complexity of the prediction function increases. Therefore, learning with limited supervision presents a major challenge to machine learning. With the goal of supervision reduction, this thesis studies the representation, discovery and incorporation of extra input and output information in learning. Information about the input space can be encoded by regularization. We first design a semi-supervised learning method for text classification that encodes the correlation of words inferred from seemingly irrelevant unlabeled text. We then propose a multi-task learning framework with a matrix-normal penalty, which compactly encodes the covariance structure of the joint input space of multiple tasks. To capture structure information that is more general than covariance and correlation, we study a class of regularization penalties on model compressibility. Then we design the projection penalty, which encodes the structure information from a dimension reduction while controlling the risk of information loss. Information about the output space can be exploited by error correcting output codes. Using the composite likelihood view, we propose an improved pairwise coding for multi-label classification, which encodes pairwise label density (as opposed to label comparisons) and decodes using variational methods. We then investigate problemdependent codes, where the encoding is learned from data instead of being predefined. We first propose a multi-label output code using canonical correlation analysis, where predictability of the code is optimized. We then argue that both discriminability and predictability are critical for output coding, and propose a max-margin formulation that promotes both discriminative and predictable codes. We empirically study our methods in a wide spectrum of applications, including document categorization, landmine detection, face recognition, brain signal classification, handwritten digit recognition, house price forecasting, music emotion prediction, medical decision, email analysis, gene function classification, outdoor scene recognition, and so forth. In all these applications, our proposed methods for encoding input and output information lead to significantly improved prediction performance.
68

Semi-Supervised Learning for Object Detection

Rosell, Mikael January 2015 (has links)
Many automotive safety applications in modern cars make use of cameras and object detection to analyze the surrounding environment. Pedestrians, animals and other vehicles can be detected and safety actions can be taken before dangerous situations arise. To detect occurrences of the different objects, these systems are traditionally trained to learn a classification model using a set of images that carry labels corresponding to their content. To obtain high performance with a variety of object appearances, the required amount of data is very large. Acquiring unlabeled images is easy, while the manual work of labeling is both time-consuming and costly. Semi-supervised learning refers to methods that utilize both labeled and unlabeled data, a situation that is highly desirable if it can lead to improved accuracy and at the same time alleviate the demand of labeled data. This has been an active area of research in the last few decades, but few studies have investigated the performance of these algorithms in larger systems. In this thesis, we investigate if and how semi-supervised learning can be used in a large-scale pedestrian detection system. With the area of application being automotive safety, where real-time performance is of high importance, the work is focused around boosting classifiers. Results are presented on a few publicly available UCI data sets and on a large data set for pedestrian detection captured in real-life traffic situations. By evaluating the algorithms on the pedestrian data set, we add the complexity of data set size, a large variety of object appearances and high input dimension. It is possible to find situations in low dimensions where an additional set of unlabeled data can be used successfully to improve a classification model, but the results show that it is hard to efficiently utilize semi-supervised learning in large-scale object detection systems. The results are hard to scale to large data sets of higher dimensions as pair-wise computations are of high complexity and proper similarity measures are hard to find.
69

A Comparison on Supervised and Semi-Supervised Machine Learning Classifiers for Diabetes Prediction

Kola, Lokesh, Muriki, Vigneshwar January 2021 (has links)
Background: The main cause of diabetes is due to high sugar levels in the blood. There is no permanent cure for diabetes. However, it can be prevented by early diagnosis. In recent years, the hype for Machine Learning is increasing in disease prediction especially during COVID-19 times. In the present scenario, it is difficult for patients to visit doctors. A possible framework is provided using Machine Learning which can detect diabetes at early stages. Objectives: This thesis aims to identify the critical features that impact gestational (Type-3) diabetes and experiments are performed to identify the efficient algorithm for Type-3 diabetes prediction. The selected algorithms are Decision Trees, RandomForest, Support Vector Machine, Gaussian Naive Bayes, Bernoulli Naive Bayes, Laplacian Support Vector Machine. The algorithms are compared based on the performance. Methods: The method consists of gathering the dataset and preprocessing the data. SelectKBestunivariate feature selection was performed for selecting the important features, which influence the Type-3 diabetes prediction. A new dataset was created by binning some of the important features from the original dataset, leading to two datasets, non-binned and binned datasets. The original dataset was imbalanced due to the unequal distribution of class labels. The train-test split was performed on both datasets. Therefore, the oversampling technique was performed on both training datasets to overcome the imbalance nature. The selected Machine Learning algorithms were trained. Predictions were made on the test data. Hyperparameter tuning was performed on all algorithms to improve the performance. Predictions were made again on the test data and accuracy, precision, recall, and f1-score were measured on both binned and non-binned datasets. Results: Among selected Machine Learning algorithms, Laplacian Support Vector Machineattained higher performance with 89.61% and 86.93% on non-binned and binned datasets respectively. Hence, it is an efficient algorithm for Type-3 diabetes prediction. The second best algorithm is Random Forest with 74.5% and 72.72% on non-binned and binned datasets. The non-binned dataset performed well for the majority of selected algorithms. Conclusions: Laplacian Support Vector Machine scored high performance among the other algorithms on both binned and non-binned datasets. The non-binned dataset showed the best performance in almost all Machine Learning algorithms except Bernoulli naive Bayes. Therefore, the non-binned dataset is more suitable for the Type-3 diabetes prediction.
70

Combating money laundering with machine learning : A study on different supervised-learning algorithms and their applicability at Swedish cryptocurrency exchanges / Bekämpning av penningtvätt med hjälp av maskininlärning : En undersökning av olika supervised-learning algorithms och deras tillämpbarhet på svenska kryptovalutaväxlare

Pettersson Ruiz, Eric January 2021 (has links)
In 2018, Europol (2018) estimated that more than $22 billion dollars were laundered in Europe by using cryptocurrencies. The Financial Action Task Force explains that moneylaunderers may exchange their illicitly gained fiat-money for crypto, launder that crypto by distributing the funds to multiple accounts and then re-exchange the crypto back to fiat-currency. This process of exchanging currencies is done through a cryptocurrency exchange, giving the exchange an ideal position to prevent money laundering from happening as it acts as middleman (FATF, 2021). However, current AML efforts at these exchanges have shown to be outdated and need to be improved. Furthermore, Weber et al. (2019) argue that machine learning could be used for this endeavor. The study's purpose is to investigate how machine learning can be used to combat money laundering activities performed using cryptocurrency. This is done by exploring what machine learning algorithms are suitable for this purpose. In addition, the study further seeks to understand the applicability of the investigated algorithms by exploring their fit at cryptocurrency exchanges. To answer the research question, four supervised-learning algorithms are compared by using the Bitcoin Elliptic Dataset. Moreover, with the objective of quantitively understanding the algorithmic performance differences, three key evaluation metrics are used: F1-score, precision and recall. Then, in order to understand the investigated algorithms applicability, two complementary qualitative interviews are performed at Swedish cryptocurrency exchanges. The study cannot conclude if there is a most suitable algorithm for detecting transactions related to money-laundering. However, the applicability of the decision tree algorithm seems to be more promising at Swedish cryptocurrency exchanges, compared to the other three algorithms. / Europol (2018) uppskattade år 2018, att mer än 22 miljarder USD tvättades i Europa genom användning av kryptovalutor. Financial Action Task Force förklarar att penningtvättare kan byta deras olagligt förvärvade fiat-valutor mot kryptovaluta, tvätta kryptovalutan genom att fördela tillgångarna till ett flertal konton och sedan återväxla kryptovalutan tillbaka till fiat-valuta. Denna process, att växla valutor, görs genom en kryptovalutaväxlare, vilket ger växlaren en ideal position för att förhindra att tvättning sker eftersom de agerar som mellanhänder (FATF, 2021). Dock har de aktuella AMLansträngningarna vid dessa växlare visat sig vara föråldrade och i behov av förbättring. Dessutom hävdar Weber et al. (2019) att maskininlärning skulle kunna användas i denna strävan. Denna studies syfte är att undersöka hur maskininlärning kan användas för att bekämpa penningtvättaktiviteter där kryptovaluta används. Detta görs genom att utforska vilka maskininlärningsalgoritmer som är användbara för detta ändamål. Dessutom strävar undersökningen till att ge förståelse för tillämpligheten hos de undersökta algoritmerna genom att utforska deras lämplighet hos kryptovalutaväxlare. För att besvara frågeställningen har fyra supervised-learning algoritmer jämförts genom att använda Bitcoin Elliptic Dataset. För att kvantitativt förstå olikheterna i algoritmisk prestanda, har tre utvärderingsverktyg använts: F1-score, Precision och Recall. Slutligen, för att ytterligare förstå de undersökta algoritmernas tillämplighet, har två kompletterande kvalitativa intervjuer med svenska kryptovalutaväxlare gjorts. Studien kan inte dra slutsatsen att det finns en bästa algoritm för att upptäcka transaktioner som kan relateras till penningtvätt. Dock verkar tillämpbarheten hos decision tree algoritmen vara mer lovande vid de svenska kyptovalutaväxlarna än de tre andra algoritmerna.

Page generated in 0.0926 seconds