• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonparametric Bayesian Models for Supervised Dimension Reduction and Regression

Mao, Kai January 2009 (has links)
<p>We propose nonparametric Bayesian models for supervised dimension</p><p>reduction and regression problems. Supervised dimension reduction is</p><p>a setting where one needs to reduce the dimensionality of the</p><p>predictors or find the dimension reduction subspace and lose little</p><p>or no predictive information. Our first method retrieves the</p><p>dimension reduction subspace in the inverse regression framework by</p><p>utilizing a dependent Dirichlet process that allows for natural</p><p>clustering for the data in terms of both the response and predictor</p><p>variables. Our second method is based on ideas from the gradient</p><p>learning framework and retrieves the dimension reduction subspace</p><p>through coherent nonparametric Bayesian kernel models. We also</p><p>discuss and provide a new rationalization of kernel regression based</p><p>on nonparametric Bayesian models allowing for direct and formal</p><p>inference on the uncertain regression functions. Our proposed models</p><p>apply for high dimensional cases where the number of variables far</p><p>exceed the sample size, and hold for both the classical setting of</p><p>Euclidean subspaces and the Riemannian setting where the marginal</p><p>distribution is concentrated on a manifold. Our Bayesian perspective</p><p>adds appropriate probabilistic and statistical frameworks that allow</p><p>for rich inference such as uncertainty estimation which is important</p><p>for measuring the estimates. Formal probabilistic models with</p><p>likelihoods and priors are given and efficient posterior sampling</p><p>can be obtained by Markov chain Monte Carlo methodologies,</p><p>particularly Gibbs sampling schemes. For the supervised dimension</p><p>reduction as the posterior draws are linear subspaces which are</p><p>points on a Grassmann manifold, we do the posterior inference with</p><p>respect to geodesics on the Grassmannian. The utility of our</p><p>approaches is illustrated on simulated and real examples.</p> / Dissertation

Page generated in 0.1113 seconds