Spelling suggestions: "subject:"8upport detector cachine classification"" "subject:"8upport detector cachine 1classification""
1 |
Contribution of FDG-PET and MRI to improve Understanding, Detection and Differentiation of DementiaDukart, Jürgen 22 March 2011 (has links) (PDF)
Progression and pattern of changes in different biomarkers of Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) like [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) have been carefully investigated over the past decades. However, there have been substantially less studies investigating the potential of combining these imaging modalities to make use of multimodal information to further improve understanding, detection and differentiation of various dementia syndromes. Further the role of preprocessing has been rarely addressed in previous research although different preprocessing algorithms have been shown to substantially affect diagnostic accuracy of dementia. In the present work common preprocessing procedures used to scale FDG-PET data were compared to each other. Further, FDG-PET and MRI information were jointly analyzed using univariate and multivariate techniques. The results suggest a highly differential effect of different scaling procedures of FDG-PET data onto detection and differentiation of various dementia syndromes. Additionally, it has been shown that combining multimodal information does further improve automatic detection and differentiation of AD and FTLD.
|
2 |
Feature selection based segmentation of multi-source images : application to brain tumor segmentation in multi-sequence MRIZhang, Nan 12 September 2011 (has links) (PDF)
Multi-spectral images have the advantage of providing complementary information to resolve some ambiguities. But, the challenge is how to make use of the multi-spectral images effectively. In this thesis, our study focuses on the fusion of multi-spectral images by extracting the most useful features to obtain the best segmentation with the least cost in time. The Support Vector Machine (SVM) classification integrated with a selection of the features in a kernel space is proposed. The selection criterion is defined by the kernel class separability. Based on this SVM classification, a framework to follow up brain tumor evolution is proposed, which consists of the following steps: to learn the brain tumors and select the features from the first magnetic resonance imaging (MRI) examination of the patients; to automatically segment the tumor in new data using a multi-kernel SVM based classification; to refine the tumor contour by a region growing technique; and to possibly carry out an adaptive training. The proposed system was tested on 13 patients with 24 examinations, including 72 MRI sequences and 1728 images. Compared with the manual traces of the doctors as the ground truth, the average classification accuracy reaches 98.9%. The system utilizes several novel feature selection methods to test the integration of feature selection and SVM classifiers. Also compared with the traditional SVM, Fuzzy C-means, the neural network and an improved level set method, the segmentation results and quantitative data analysis demonstrate the effectiveness of our proposed system.
|
3 |
Počítání tlakových lahví v obraze / Gas Cylinder Counting in Camera ImagesKlos, Dominik January 2014 (has links)
This thesis deals with an automatic counting of cylinders placed on the back of a truck using images taken by a camera mounted above the car. To achieve this goal, an SVM classifier based on HOG image descriptors has been trained to detect the cylinders. Further, a tracking method based on optical flow estimation has been designed to track the cylinders through image sequences. The result of the thesis is an application that counts bottles with precision 93,08 % placed on the truck and visualizes results of the detection.
|
4 |
Validation of Diagnostic Imaging Criteria for Primary Progressive AphasiaBisenius, Sandrine 28 November 2017 (has links)
For two decades, researchers and clinicians have been using the diagnostic criteria for FTD to generally diagnose a patient as suffering from PPA and the criteria of Neary et al. (1998) to further specify the diagnosis as progressive nonfluent aphasia or semantic dementia. However, there were a number of PPA cases that could not be classified according to the criteria of Neary and colleagues, which led to a revision of the diagnostic clinical and research criteria for PPA by Gorno-Tempini et al. (2011). The revised criteria encompass three PPA variants (svPPA, nfvPPA, and lvPPA) with three stages characterized by increasing evidence: clinical diagnosis, imaging-supported diagnosis, and diagnosis with definite pathology. As compared to the previous diagnostic criteria, more emphasis is placed on imaging markers as supportive features. These imaging criteria were however proposed based on a purely qualitative evaluation of the literature and have not been validated so far. The aim of this thesis was to quantitatively evaluate the validity of the new diagnostic imaging criteria for PPA variants using anatomical likelihood meta-analyses (study 1) and to investigate the usefulness of these imaging criteria for the individual diagnosis of PPA patients in clinical routine using support vector machine classification (study 2).
|
5 |
Contribution of FDG-PET and MRI to improve Understanding, Detection and Differentiation of DementiaDukart, Jürgen 02 October 2011 (has links)
Progression and pattern of changes in different biomarkers of Alzheimer’s disease (AD) and frontotemporal lobar degeneration (FTLD) like [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) have been carefully investigated over the past decades. However, there have been substantially less studies investigating the potential of combining these imaging modalities to make use of multimodal information to further improve understanding, detection and differentiation of various dementia syndromes. Further the role of preprocessing has been rarely addressed in previous research although different preprocessing algorithms have been shown to substantially affect diagnostic accuracy of dementia. In the present work common preprocessing procedures used to scale FDG-PET data were compared to each other. Further, FDG-PET and MRI information were jointly analyzed using univariate and multivariate techniques. The results suggest a highly differential effect of different scaling procedures of FDG-PET data onto detection and differentiation of various dementia syndromes. Additionally, it has been shown that combining multimodal information does further improve automatic detection and differentiation of AD and FTLD.
|
6 |
Feature selection based segmentation of multi-source images : application to brain tumor segmentation in multi-sequence MRI / Segmentation des images multi-sources basée sur la sélection des attributs : application à la segmentation des tumeurs cérébrales en IRMZhang, Nan 12 September 2011 (has links)
Les images multi-spectrales présentent l’avantage de fournir des informations complémentaires permettant de lever des ambigüités. Le défi est cependant comment exploiter ces informations multi-spectrales efficacement. Dans cette thèse, nous nous focalisons sur la fusion des images multi-spectrales en extrayant des attributs les plus pertinents en vue d’obtenir la meilleure segmentation possible avec le moindre coût de calcul possible. La classification par le Support Vector Machine (SVM), combinée avec une méthode de sélection d’attributs, est proposée. Le critère de sélection est défini par la séparabilité des noyaux de classe. S’appuyant sur cette classification SVM, un cadre pour suivre l’évolution est proposé. Il comprend les étapes suivantes : apprentissage des tumeurs cérébrales et sélection des attributs à partir du premier examen IRM (imagerie par résonance magnétique) ; segmentation automatique des tumeurs dans de nouvelles images en utilisant une classification basée sur le SVM multi-noyaux ; affiner le contour des tumeurs par une technique de croissance de région ; effectuer un éventuel apprentissage adaptatif. L’approche proposée a été évaluée sur 13 patients avec 24 examens, y compris 72 séquences IRM et 1728 images. En comparant avec le SVM traditionnel, Fuzzy C-means, le réseau de neurones, et une méthode d’ensemble de niveaux, les résultats de segmentation et l’analyse quantitative de ces résultats démontrent l’efficacité de l’approche proposée. / Multi-spectral images have the advantage of providing complementary information to resolve some ambiguities. But, the challenge is how to make use of the multi-spectral images effectively. In this thesis, our study focuses on the fusion of multi-spectral images by extracting the most useful features to obtain the best segmentation with the least cost in time. The Support Vector Machine (SVM) classification integrated with a selection of the features in a kernel space is proposed. The selection criterion is defined by the kernel class separability. Based on this SVM classification, a framework to follow up brain tumor evolution is proposed, which consists of the following steps: to learn the brain tumors and select the features from the first magnetic resonance imaging (MRI) examination of the patients; to automatically segment the tumor in new data using a multi-kernel SVM based classification; to refine the tumor contour by a region growing technique; and to possibly carry out an adaptive training. The proposed system was tested on 13 patients with 24 examinations, including 72 MRI sequences and 1728 images. Compared with the manual traces of the doctors as the ground truth, the average classification accuracy reaches 98.9%. The system utilizes several novel feature selection methods to test the integration of feature selection and SVM classifiers. Also compared with the traditional SVM, Fuzzy C-means, the neural network and an improved level set method, the segmentation results and quantitative data analysis demonstrate the effectiveness of our proposed system.
|
7 |
Porovnání klasifikačních metod / Comparison of Classification MethodsDočekal, Martin January 2019 (has links)
This thesis deals with a comparison of classification methods. At first, these classification methods based on machine learning are described, then a classifier comparison system is designed and implemented. This thesis also describes some classification tasks and datasets on which the designed system will be tested. The evaluation of classification tasks is done according to standard metrics. In this thesis is presented design and implementation of a classifier that is based on the principle of evolutionary algorithms.
|
Page generated in 0.4449 seconds