• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mineração de dados para modelagem de risco de metástase em tumor de próstata / Data mining for the modeling of metastasis risk on prostate tumor

Chahine, Gabriel Jorge, 1982- 23 August 2018 (has links)
Orientadores: Laercio Luis Vendite, Stanley Robson de Medeiros Oliveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T23:19:05Z (GMT). No. of bitstreams: 1 Chahine_GabrielJorge_M.pdf: 1229228 bytes, checksum: fffd253696b5a9dee9870ae1910256e5 (MD5) Previous issue date: 2013 / Resumo: Dos cânceres do trato urinário, os mais comuns são os de Próstata e de Bexiga, sendo o primeiro a causa mais comum de morte por câncer e o carcinoma mais comum para homens. Nosso objetivo nesse trabalho é desenvolver modelos para determinar se um dado tumor irá aumentar e invadir outros órgãos ou se não apresenta esse risco e permanecerá contido. Para isso, coletamos dados de pacientes com câncer de próstata e analisamos quais variáveis mais impactam para ocorrência de metástase. Com isso construímos modelos de classificação, que, com os dados de um determinado paciente, detectam se naquele caso haverá ou não metástase à distância. Nesse trabalho apresentamos modelos para predição de ocorrência de metástases em câncer de próstata. As simulações foram feitas com dados cedidos pelo prof. Dr. Ubirajara Ferreira, responsável pela disciplina de Urologia da FCM da Unicamp, do Hospital das Clinicas - UNICAMP / Abstract: Of all the cancers of the urinary tract, the most common are the Prostate and Bladder. The first being the most common cause of death by cancer and the most common carcinoma in men. Our goal in this work is to develop predictive models to determine whether a given tumor will grow and invade other organs or, if it doesn't present this risk and will remain constrained. To do this, we collected data from patients with prostate cancer and assessed which variables were the most responsible for the occurrence of metastasis. Hence, we built predictive models that, with the data of a given patient, are able detect whether or not a distant metastasis would occur in. In this work we present models to predict the occurrence of metastasis in prostate cancer. The simulations were made with the data given by prof. Dr. Ubirajara Ferreira, responsible for the disciplines of Urology from Unicamp's Faculty of Medical Sciences / Mestrado / Matematica Aplicada e Computacional / Mestre em Matemática Aplicada e Computacional
2

Comparative Study of Methods for Linguistic Modeling of Numerical Data

Visa, Sofia January 2002 (has links)
No description available.
3

Máquina de vetores de suporte aplicada a dados de espectroscopia NIR de combustíveis e lubrificantes para o desenvolvimento de modelos de regressão e classificação / Support vectors machine applied to NIR spectroscopy data of fuels and lubricants for development of regression and classification models

Alves, Julio Cesar Laurentino, 1978- 19 August 2018 (has links)
Orientador: Ronei Jesus Poppi / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-19T18:06:58Z (GMT). No. of bitstreams: 1 Alves_JulioCesarLaurentino_D.pdf: 19282542 bytes, checksum: 78d1bf16d9d133c488adb4bedf593b06 (MD5) Previous issue date: 2012 / Resumo: Modelos lineares de regressão e classificação por vezes proporcionam um desempenho insatisfatório no tratamento de dados de espectroscopia no infravermelho próximo de produtos derivados de petróleo. A máquina de vetores de suporte (SVM), baseada na teoria do aprendizado estatístico, possibilita o desenvolvimento de modelos de regressão e classificação não lineares que podem proporcionar uma melhor modelagem dos referidos dados, porém ainda é pouco explorada para resolução de problemas em química analítica. Nesse trabalho demonstra-se a utilização do SVM para o tratamento de dados de espectroscopia na região do infravermelho próximo de combustíveis e lubrificantes. O SVM foi utilizado para a solução de problemas de regressão e classificação e seus resultados comparados com os algoritmos de referência PLS e SIMCA. Foram abordados os seguintes problemas analíticos relacionados a controle de processos e controle de qualidade: (i) determinação de parâmetros de qualidade do óleo diesel utilizados para otimização do processo de mistura em linha na produção desse combustível; (ii) determinação de parâmetros de qualidade do óleo diesel que é carga do processo de HDT, para controle e otimização das condições de processo dessa unidade; (iii) determinação do teor de biodiesel na mistura com o óleo diesel; (iv) classificação das diferentes correntes que compõem o pool de óleo diesel na refinaria, permitindo a identificação de adulterações e controle de qualidade; (v) classificação de lubrificantes quanto ao teor de óleo naftênico e/ou presença de óleo vegetal. Demonstram-se o melhor desempenho do SVM em relação aos modelos desenvolvidos com os métodos quimiométricos de referência (métodos lineares). O desenvolvimento de métodos analíticos rápidos e de baixo custo para solução de problemas em controle de processos e controle de qualidade, com a utilização de modelos de regressão e classificação mais exatos, proporcionam o monitoramento da qualidade de forma mais eficaz e eficiente, contribuindo para o aumento das rentabilidades nas atividades econômicas de produção e comercialização dos derivados do petróleo estudados / Abstract: Linear regression and classification models can produce a poor performance in processing near-infrared spectroscopy data of petroleum products. Support vectors machine (SVM), based on statistical learning theory, provides the development of models for nonlinear regression and classification that can result in better modeling of these data but it is still little explored for solving problems in analytical chemistry. This work demonstrates the use of the SVM for treatment of near-infrared spectroscopy data of fuels and lubricants. The SVM was used to solve regression and classification problems and its results were compared with the reference algorithms PLS and SIMCA. The following analytical problems related to process control and quality control were studied: (i) quality parameters determination of diesel oil, used for optimization of in line blending process; (ii) quality parameters determination of diesel oil which is feed-stock of HDT unit for optimization of process control; (iii) quantification of biodiesel blended with diesel oil; (iv) classification of different streams that make up the pool of diesel oil in the refinery, enabling identification of adulteration and quality control; (v) classification of lubricants based on the content of naphthenic oil and/or the presence of vegetable oil. It is shown the best performance of the SVM compared to models developed with the reference algorithms. The development of fast and low cost analytical methods used in process control and quality control, with the use of more accurate regression and classification models, allows monitoring quality parameters in more effectiveness and efficient manner, making possible an increase in profitability of economic activities of production and business of petroleum derivatives studied / Doutorado / Quimica Analitica / Doutor em Ciências
4

Modelos de classificação : aplicações no setor bancário / Classification models : applications in banking sector

Caetano, Mateus, 1983- 02 June 2015 (has links)
Orientadores: Antonio Carlos Moretti, Márcia Aparecida Gomes Ruggiero / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T18:03:59Z (GMT). No. of bitstreams: 1 Caetano_Mateus_M.pdf: 1249293 bytes, checksum: f8adb755363291250261872ea756f58c (MD5) Previous issue date: 2015 / Resumo: Técnicas para solucionar problemas de classificação têm aplicações em diversas áreas, como concessão de crédito, reconhecimento de imagens, detecção de SPAM, entre outras. É uma área de intensa pesquisa, para a qual diversos métodos foram e continuam sendo desenvolvidos. Dado que não há um método que apresente o melhor desempenho para qualquer tipo de aplicação, diferentes métodos precisam ser comparados para que possamos encontrar o melhor ajuste para cada aplicação em particular. Neste trabalho estudamos seis diferentes métodos aplicados em problemas de classificação supervisionada (onde há uma resposta conhecida para o treinamento do modelo): Regressão Logística, Árvore de Decisão, Naive Bayes, KNN (k-Nearest Neighbors), Redes Neurais e Support Vector Machine. Aplicamos os métodos em três conjuntos de dados referentes à problemas de concessão de crédito e seleção de clientes para campanha de marketing bancário. Realizamos o pré-processamento dos dados para lidar com observações faltantes e classes desbalanceadas. Utilizamos técnicas de particionamento do conjunto de dados e diversas métricas, como acurácia, F1 e curva ROC, com o objetivo de avaliar os desempenhos dos métodos/técnicas. Comparamos, para cada problema, o desempenho dos diferentes métodos considerando as métricas selecionadas. Os resultados obtidos pelos melhores modelos de cada aplicação foram compatíveis com outros estudos que utilizaram os mesmos bancos de dados / Abstract: Techniques for classification problems have applications on many areas, such as credit risk evaluation, image recognition, SPAM detection, among others. It is an area of intense research, for which many methods were and continue to be developed. Given that there is not a method whose performance is better across any type of problems, different methods need to be compared in order to select the one that provides the best adjustment for each application in particular. In this work, we studied six different methods applied to supervised classification problems (when there is a known response for the model training): Logistic Regression, Decision Tree, Naive Bayes, KNN (k-Nearest Neighbors), Neural Networks and Support Vector Machine. We applied these methods on three data sets related to credit evaluation and customer selection for a banking marketing campaign. We made the data pre-processing to cope with missing data and unbalanced classes. We used data partitioning techniques and several metrics, as accuracy, F1 and ROC curve, in order to evaluate the methods/techniques performances. We compared, for each problem, the performances of the different methods using the selected metrics. The results obtained for the best models on each application were comparable to other studies that have used the same data sources / Mestrado / Matematica Aplicada / Mestra em Matemática Aplicada
5

Analyse par apprentissage automatique des réponses fMRI du cortex auditif à des modulations spectro-temporelles

Bouchard, Lysiane 12 1900 (has links)
L'application de classifieurs linéaires à l'analyse des données d'imagerie cérébrale (fMRI) a mené à plusieurs percées intéressantes au cours des dernières années. Ces classifieurs combinent linéairement les réponses des voxels pour détecter et catégoriser différents états du cerveau. Ils sont plus agnostics que les méthodes d'analyses conventionnelles qui traitent systématiquement les patterns faibles et distribués comme du bruit. Dans le présent projet, nous utilisons ces classifieurs pour valider une hypothèse portant sur l'encodage des sons dans le cerveau humain. Plus précisément, nous cherchons à localiser des neurones, dans le cortex auditif primaire, qui détecteraient les modulations spectrales et temporelles présentes dans les sons. Nous utilisons les enregistrements fMRI de sujets soumis à 49 modulations spectro-temporelles différentes. L'analyse fMRI au moyen de classifieurs linéaires n'est pas standard, jusqu'à maintenant, dans ce domaine. De plus, à long terme, nous avons aussi pour objectif le développement de nouveaux algorithmes d'apprentissage automatique spécialisés pour les données fMRI. Pour ces raisons, une bonne partie des expériences vise surtout à étudier le comportement des classifieurs. Nous nous intéressons principalement à 3 classifieurs linéaires standards, soient l'algorithme machine à vecteurs de support (linéaire), l'algorithme régression logistique (régularisée) et le modèle bayésien gaussien naïf (variances partagées). / The application of linear machine learning classifiers to the analysis of brain imaging data (fMRI) has led to several interesting breakthroughs in recent years. These classifiers combine the responses of the voxels to detect and categorize different brain states. They allow a more agnostic analysis than conventional fMRI analysis that systematically treats weak and distributed patterns as unwanted noise. In this project, we use such classifiers to validate an hypothesis concerning the encoding of sounds in the human brain. More precisely, we attempt to locate neurons tuned to spectral and temporal modulations in sound. We use fMRI recordings of brain responses of subjects listening to 49 different spectro-temporal modulations. The analysis of fMRI data through linear classifiers is not yet a standard procedure in this field. Thus, an important objective of this project, in the long term, is the development of new machine learning algorithms specialized for neuroimaging data. For these reasons, an important part of the experiments is dedicated to studying the behaviour of the classifiers. We are mainly interested in 3 standard linear classifiers, namely the support vectors machine algorithm (linear), the logistic regression algorithm (regularized) and the naïve bayesian gaussian model (shared variances).
6

Analyse par apprentissage automatique des réponses fMRI du cortex auditif à des modulations spectro-temporelles

Bouchard, Lysiane 12 1900 (has links)
No description available.

Page generated in 0.6786 seconds