• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Porphyrins with a carbosilane dendrimer periphery as synthetic components for supramolecular self-assembly

Ishtaiwi, Zakariyya, Rüffer, Tobias, Klaib, Sami, Buschbeck, Roy, Walfort, Bernhard, Lang, Heinrich 05 June 2014 (has links) (PDF)
The preparation of the shape-persistent carbosilane-functionalized porphyrins H2TPP(4-SiRR’Me)4, Zn(II)- TPP(4-SiRR’Me)4 (R = R’ = Me, CH2CHvCH2, CH2 CH2CH2OH; R = Me, R’ = CH2 CHvCH2, CH2CH2CH2OH; TPP = tetraphenyl porphyrin), H2TPP(4-Si(C6H4-1,4-SiRR’Me)3)4, and Zn(II)-TPP(4-Si- (C6H4-1,4-SiRR’Me)3)4 (R = R’ = Me, CH2CHvCH2; R = Me, R’ = CH2CHvCH2) using the Lindsey condensation methodology is described. For a series of five samples their structures in the solid state were determined by single crystal X-ray structure analysis. The appropriate 0th and 1st generation porphyrin-based 1,4-phenylene carbosilanes form 2D and 3D supramolecular network structures, primarily controlled by either π–π interactions (between pyrrole units and neighboring phenylene rings) or directional molecular hydrogen recognition and zinc–oxygen bond formation in the appropriate hydroxyl-functionalized molecules. UV-Vis spectroscopic studies were carried out in order to analyze the effect of the dendritic branches on the optical properties of the porphyrin ring. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
2

Porphyrins with a carbosilane dendrimer periphery as synthetic components for supramolecular self-assembly

Ishtaiwi, Zakariyya, Rüffer, Tobias, Klaib, Sami, Buschbeck, Roy, Walfort, Bernhard, Lang, Heinrich 05 June 2014 (has links)
The preparation of the shape-persistent carbosilane-functionalized porphyrins H2TPP(4-SiRR’Me)4, Zn(II)- TPP(4-SiRR’Me)4 (R = R’ = Me, CH2CHvCH2, CH2 CH2CH2OH; R = Me, R’ = CH2 CHvCH2, CH2CH2CH2OH; TPP = tetraphenyl porphyrin), H2TPP(4-Si(C6H4-1,4-SiRR’Me)3)4, and Zn(II)-TPP(4-Si- (C6H4-1,4-SiRR’Me)3)4 (R = R’ = Me, CH2CHvCH2; R = Me, R’ = CH2CHvCH2) using the Lindsey condensation methodology is described. For a series of five samples their structures in the solid state were determined by single crystal X-ray structure analysis. The appropriate 0th and 1st generation porphyrin-based 1,4-phenylene carbosilanes form 2D and 3D supramolecular network structures, primarily controlled by either π–π interactions (between pyrrole units and neighboring phenylene rings) or directional molecular hydrogen recognition and zinc–oxygen bond formation in the appropriate hydroxyl-functionalized molecules. UV-Vis spectroscopic studies were carried out in order to analyze the effect of the dendritic branches on the optical properties of the porphyrin ring. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.0532 seconds