Spelling suggestions: "subject:"supramolekularen echselwirkungen"" "subject:"supramolekularen diewechselwirkungen""
1 |
Synthetic peptides derived from decorin as building blocks for biomaterials based on supramolecular interactionsFederico, Stefania January 2011 (has links)
In this work, the development of a new molecular building block, based on synthetic peptides derived from decorin, is presented. These peptides represent a promising basis for the design of polymer-based biomaterials that mimic the ECM on a molecular level and exploit specific biological recognition for technical applications.
Multiple sequence alignments of the internal repeats of decorin that formed the inner and outer surface of the arch-shaped protein were used to develop consensus sequences. These sequences contained conserved sequence motifs that are likely to be related to structural and functional features of the protein. Peptides representative for the consensus sequences were synthesized by microwave-assisted solid phase peptide synthesis and purified by RP-HPLC, with purities higher than 95 mol%. After confirming the desired masses by MALDI-TOF-MS, the primary structure of each peptide was investigated by 1H and 2D NMR, from which a full assignment of the chemical shifts was obtained. The characterization of the peptides conformation in solution was performed by CD spectroscopy, which demonstrated that using TFE, the peptides from the outer surface of decorin show a high propensity to fold into helical structures as observed in the original protein. To the contrary, the peptides from the inner surface did not show propensity to form stable secondary structure. The investigation of the binding capability of the peptides to Collagen I was performed by surface plasmon resonance analyses, from which all but one of the peptides representing the inner surface of decorin showed binding affinity to collagen with values of dissociation constant between 2•10-7 M and 2.3•10-4 M. On the other hand, the peptides representative for the outer surface of decorin did not show any significant interaction to collagen.
This information was then used to develop experimental demonstration for the binding capabilities of the peptides from the inner surface of decorin to collagen even when used in more complicated situations close to possible appications. With this purpose, the peptide (LRELHLNNN) which showed the highest binding affinity to collagen (2•10-7 M) was functionalized with an N-terminal triple bond in order to obtain a peptide dimer via copper(I)-catalyzed cycloaddition reaction with 4,4'-diazidostilbene-2,2'-disulfonic acid. Rheological measurements showed that the presence of the peptide dimer was able to enhance the elastic modulus (G') of a collagen gel from ~ 600 Pa (collagen alone) to ~ 2700 Pa (collagen and peptide dimer). Moreover, it was shown that the mechanical properties of a collagen gel can be tailored by using different molar ratios of peptide dimer respect to collagen.
The same peptide, functionalized with the triple bond, was used to obtain a peptide-dye conjugate by coupling it with N-(5'-azidopentanoyl)-5-aminofluorescein. An aqueous solution (5 vol% methanol) of the peptide dye conjugate was injected into a collagen and a hyaluronic acid (HA) gel and images of fluorescence detection showed that the diffusion of the peptide was slower in the collagen gel compared to the HA gel.
The third experimental demonstration was gained using the peptide (LSELRLHNN) which showed the lower binding affinity (2.3•10-4 M) to collagen. This peptide was grafted to hyaluronic acid via EDC-chemistry, with a degree of functionalization of 7 ± 2 mol% as calculated by 1H-NMR. The grafting was further confirmed by FTIR and TGA measurements, which showed that the onset of decomposition for the HA-g-peptide decreased by 10 °C compared to the native HA. Rheological measurements showed that the elastic modulus of a system based on collagen and HA-g-peptide increased by almost two order of magnitude (G' = 200 Pa) compared to a system based on collagen and HA (G' = 0.9 Pa).
Overall, this study showed that the synthetic peptides, which were identified from decorin, can be applied as potential building blocks for biomimetic materials that function via biological recognition. / In dieser Arbeit wird das Design, die Synthese und Analyse neuer molekularer Bausteine für Biomaterialien basierend auf synthetischen, von Decorin abgeleiteten Peptiden beschrieben. Diese Peptide sind deshalb als Baustein für polymer-basierte Biomaterialien von besonderem Interesse, da sie die extrazelluläre Matrix (ECM) auf molekularer Ebene nachempfinden und spezifische, biologische wichtige Interaktionen für technische Anwendungen nutzbar machen.
Das Alignment multipler Sequenzen der internen Repeats von Decorin, die jeweils die innere bzw. äußere Seite des sichelförmigen Decorins bilden, wurde genutzt, um Konsensus-Sequenzen zu definieren. Diese Sequenzen beinhalten stark konservierte Sequenzmotive, die wahrscheinlich wichtig für Struktur und Funktion des Proteins sind. Ausgewählte Peptide, die repräsentativ für die Konsensus-Sequenzen sind, wurden dann mittels Mikrowellen unterstützter Festphasensynthese synthetisiert und mit RP-HPLC aufgereinigt, so dass Peptide mit Reinheiten ≥ 95 mol% erhalten wurden. Die Peptide wurden per MALDI-TOF-MS sowie 1D und 2D NMR Spektroskopie charakterisiert, wobei die Zuordnung der chemischen Verschiebungen zu einzelnen Protonen und Kohlenstoffen aus den 2D NMR Experimenten erfolgte. In Lösung wurden die Peptide zudem mit CD Spektroskopie untersucht, wobei gezeigt werden konnte, dass nur Peptide, die von der äußeren Seite des Decorins abgeleitet wurden, sich durch Zugabe von 2,2,2-Trifluorethanol zu α-Helices falten. Diese Faltung ist auch in der Röntgenstruktur bei den korrespondierenden Abschnitten zu finden. Im Gegensatz dazu zeigten Peptide, die von der inneren Seite des Decorins abgeleitet wurden, keine stabilen Sekundärstrukturen in Lösung (β-Faltblattstruktur in der Röntgenstruktur). Bindungsstudien der Peptide zu Kollagen I wurden mit Oberflächenplasmonenresonanz durchgeführt, wobei gezeigt werden konnte, dass alle bis auf ein Peptid, die von der innneren Seite abgeleitet wurden, an Kollagen mit Dissoziationskonstanten von 2•10-7 M bis 2.3•10-4 M binden, während Peptide, die für die äußere Seite von Decorin repräsentativ sind, keine Bindung an Kollagen I zeigten.
Diese Information wurde genutzt, um experimentelle Demonstrationsobjekte dieser Interaktion in komplexeren, einer späteren Anwendung näheren Situation, zu entwickeln. Dazu wurde das Peptide LRELHLNNN, welches die stärkste Bindung zu Kollagen I zeigte (KD = 2•10-7 M), N-terminal mit einer Alkinbindung funktionalisiert, so dass durch Kupfer (I) katalysierte Reaktion mit 4,4'-Diazidostilben-2,2'-disulfonsäure ein Peptid-Dimer erhalten werden konnte. Rheologische Untersuchungen zeigten, dass durch Zugabe des Peptid-Dimers der Elastizitätsmodul G' von Kollagen-Gelen von ~ 600 Pa (nur Kollagen) auf ~ 2700 Pa (Kollagen und Peptide-Dimer) gesteigert werden konnte. Darüber hinaus konnte gezeigt werden, dass die Veränderung der mechanischen Eigenschaften der Gele durch Veränderung des Kollagen:Peptid-Dimer Verhältnisses angepasst werden konnten.
Das gleiche, mit einer Alkin-Bindung funktionaliserte Peptid wurde dann zur Darstellung eines Peptid-Fluorescein Konjugats genutzt, indem es mit N-(5'-azidopentanoyl)-5-aminofluorescein umgesetzt wurde. Eine wässrige Lösung des Peptid-Farbstoff-Konjugats wurde dann in Kollagen- bzw. Hyaluronsäuregele injiziert. Die Diffusion des Peptid-Farbstoff-Konjugats war in Kollagengelen im Vergleich zu Hyaluronsäuregelen deutlich verlangsamt.
Das dritte Demonstrationsobjekt wurde erhalten, indem das Peptid LSELRLHNN, welches die geringste Bindung an Kollagen zeigte (KD = 2.3•10-4 M), auf Hyaluronsäure (HA) gegrafted wurde. Die Reaktion wurde durch Carbodiimid-mediierte Kupplung erreicht, und ein Funktionalisierungsgrad von 7 ± 2 mol% wurde durch Integration der 1H-NMR Spektren bestimmt. Das erfolgreiche Grafting wurde durch FTIR- und TGA-Untersuchungen bestätigt. In letzteren wurde gezeigt, dass der thermische Abbau durch das Grafting bei etwas niedrigeren Temperaturen beginnt als der Abbau reiner Hyaluronsäure (ΔT = 10 °C). Rheologische Untersuchungen zeigten, dass ein System aus Kollagen und HA-g-Peptid ein um zwei Größenordnungen höheren Elastizitätsmodul G' hat (G' = 200 Pa) als Systeme, die aus einer physikalischen Mischung von Kollagen und HA bestehen (G' = 0.9 Pa).
Zusammenfassend konnte gezeigt werden, dass die Peptide, die von Decorin abgeleitet wurden, als Kollagen-bindende Bausteine für biomimetische Materialien genutzt werden können.
|
Page generated in 0.0968 seconds