• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comprehensine Studies Of Surface Aeration Systems

Kumar, Bimlesh January 2009 (has links)
Dissolved oxygen refers to the mass of oxygen that is contained in water. The concentration of dissolved oxygen is an important indicator of the environments water quality. The presence of oxygen in water is desirable therefore it is a positive sign; whereas the absence of oxygen is a sign of severe pollution. An adequate supply of dissolved oxygen is important for waste water treatment processes. Many naturally occurring biological and chemical processes use oxygen, thereby diminishing the dissolved oxygen concentration in the water. The physical process of oxygen transfer or oxygen absorption from the atmosphere acts to replenish the used oxygen. This process has been termed aeration. Aeration is the primary requirement of the biological treatment of water and wastewater treatment. As reported in the literature, the aeration process consumes as much as 60-80% of total power requirements in wastewater treatment plants. Therefore, it is necessary that the design and operation of aeration process should be economized in terms of their energy efficiency. The performance of surface aeration systems is rated in terms of their oxygen transfer rate; hence the choice of a particular surface aeration system depends on its performance and efficiency of oxygen transfer rates. Oxygen transfer rate and the corresponding power requirement to rotate the rotor are very vital parameters for the design and scale-up of surface aerators. Basically two types of operation are in use for surface aeration systems – batch operation and continuous operation. Batch operation involves a single vessel which is filled, aerated then completely emptied. Continuous operation method of operating a biological treatment plant is characterized by a steady input stream (in terms of chemical and biological composition and flow rate, when flow and concentration equalization is practiced), steady process conditions during the treatment steps and by a fairly consistent flow of treated material with only little variation in its composition. The work presented in this thesis consists of two parts. The first one deals with the experimental investigations on the three types of batch surface aeration tanks. A comprehensive design analysis has been worked out and presented on these types of surface aeration systems. In the second category, experimental investigations have been carried out extensively on continuous flow surface aeration systems of different sizes. Analysis has led to the formulation of optimal geometric dimension and the simulation criteria for the design purposes. As far as the first category of investigations is concerned, a substantial work has been reported on batch surface aerators on various issues, during the past several years. Still, a general methodology to scale up or scale down the process phenomena is lacking. In the present work, experiments were done on different shaped batch surface aeration system for generalizing or devising the scale up and scale down criteria for oxygen transfer coefficient and power consumption. Present work through experimental observations established that unbaffled circular tanks are more energy efficient than baffled when used as surface aerator. Power consumption in surface aeration systems is characterized by a fundamental non-dimensional parameter named power number. This number relates drag force to the inertial force in fluid flow system. Power number scaling up of unbaffled surface aerators of square, circular and rectangular shaped tanks is one of the most important contributions of the present work. Design charts have been developed for all the three shape of tanks for the installation as the batch surface aeration systems. Based on the experimental analyses in the present work, it was found that circular shape is the most efficient than any other shape and it is also established that generally a number of smaller sized tanks were more economic and efficient than using a single big tank while aerating the same volume of water. Based on the energy economy analysis, present work suggests the optimal speed range of batch systems of different shaped surface aeration tanks. Different sized rectangular aeration tanks with different aspect ratios (that is length to width ratio) were tested along with a series of square and circular tanks for comparing their relative performances. Present work by doing experiments answered this fact and found that square tank (aspect ratio =1) was more efficient than any other aspect ratio rectangular tanks. Vortexes are inherently present in any type of unbaffled tanks. Present work analyzed the vortex behavior of unbaffled surface aeration systems to determine the critical impeller speed in unbaffled batch surface aeration systems at which oxygen transfer rates are more. The second part of the present work establishes the optimal geometrical parameters of a continuous flow surface aeration systems. These types of operations were found to be least reported in the available literature and there appears to be of no report in the literature on optimal geometrical parameters. Extensive experimental work is reported in the present thesis on the establishment of the optimal geometrical parameters of continuous flow surface aeration systems. From there, simulation criteria are established by maintaining optimal geometrical similarity in different sized continuous flow surface aeration tanks; so that the scale up or scale down criteria can be applied to predict oxygen transfer rates and power number.
2

Studies On Surface Aeration In Circular Tanks

Patel, Ajey Kumar 09 1900 (has links)
Water is a fundamental need for existence of mankind. Only 0.01 % of total global water is readily available for human consumption as fresh water. The rapid increase in human population and consequent rise in urbanization and industrialization is producing a stress on this meager water resource. Water at the same time is a renewable resource, ie with suitable treatment it can be made re-useable. Aeration is one of the important processes employed in activated sludge process of the biological treatment units of wastewater. In this process the level of dissolved oxygen in the effluent is raised to the required amounts to decompose organic matters present in the effluent and thereby to reduce the BOD (biochemical oxygen demand) of the effluent by a physical means called “aeration process”. The aeration process consumes as much as 60-80% of total power requirements of wastewater treatment plants. Therefore, the efficiency in design of aeration process is required so that treatment and its power consumption can be economized. With the objective of optimizing the aeration process the present work in this thesis endeavors to develop an aeration which is efficient as well as economical. The various geometric parameters that affect the aeration process in mechanical surface aerators have been optimized. In the present work circular surface aeration tanks have been used. There are two types of circular tanks: Baffled and unbaffled. Separate optimal geometric parameters have been obtained for baffled and unbaffled circular tanks. With optimal geometric similitude scale up studies were done. Reynolds number and Froude number criteria has been found unsuitable for scaling oxygen transfer rates. Theoretical power per unit volume parameter is the most suitable scaling parameter for oxygen transfer rates in both baffled and unbaffled circular tanks. Baffled circular tanks are found to give better performance in terms of oxygen transfer rates as compared to unbaffled tanks. In contrast unbaffled tanks give better performance in terms of power consumption as compared to baffled circular tanks. General correlations have been developed for oxygen transfer rates for both baffled and unbaffled circular surface aerations tanks which incorporate all the geometric and dynamic parameters. These correlations help in the design of new treatment facilities as well as evaluating and up gradation of existing facilities. Power consumption studies have also been conducted on circular surface aeration tanks. Geometric parameters affect the power consumption significantly. Using the optimal geometric similarity conditions obtained for oxygen transfer rates the scale up studies for power consumption has also been done. Reynolds and Froude criteria are found to be giving scale effects for non dimensional power consumption parameter, power number. Theoretical power per unit volume parameter is found to be the scaling parameters for power number and a suitable correlation equation has been developed for baffled circular surface aeration tanks. General correlations have been developed for power number in baffled and unbaffled circular tanks. A novel type of self aspirating tube sparger system has been developed. It is like a bubble aerator with a rotor. The various geometric parameters that affect oxygen transfer rates have been optimized in baffled circular surface aeration tank. The optimal geometrically similar tanks have been used for scale up studies. Theoretical power per unit volume parameter is found to be the scaling parameter for oxygen transfer rates in circular surface aeration tanks with self aspirating sparger systems. Circular baffled tanks with a special sparger system gives very much higher oxygen transfer rates (as much as 5.7 times) as compared to circular tanks. The oxygen transfer rates data from literature also show lower values as compared to the system developed in this thesis. Geometrically similar unbaffled tanks have also been used with self aspirating sparger system. For same power consumption oxygen transfer rate in circular surface aeration tanks with self aspirating sparger system is higher as compared to circular tanks without self aspirating system. Mixing mechanisms in surface aeration tanks depend upon two different extreme length scales of time, namely macromixing and micromixing. Small scale mixing close to the molecular level is referred to as micromixing; whereas macromixing refers to the mixing on a large scale. The effect of geometrical parameters on macromixing time has been studied. The scaling parameters for macromixing and micromixing have been developed and simulation equations governing these time scales are also presented.
3

Characterization and improvement of a surface aerator for water treatment / Caractérisation et amélioration d’un aérateur de surface pour le traitement des eaux

Issa, Hayder Mohammed 24 October 2013 (has links)
Un nouveau système d’aération de surface pour le traitement des eaux usées a été étudié. Sa spécificité réside dans sa capacité à fonctionner selon deux modes : aération ou simple brassage, en modifiant uniquement le sens de rotation du système. Un pilote a permis de cibler le travail sur l’étude expérimentale du transfert de matière et de l’hydrodynamique. Les champs d'écoulement et les mesures de vitesse à l'intérieur de la cuve agitée ont été réalisés par vélocimétrie laser à effet Doppler (LDV) et par vélocimétrie par images des particules (PIV) pour le mode monophasique (brassage) et pour le mode diphasique (aération). Le transfert d'oxygène se produit à la fois dans la cuve et dans le spray au-dessus de la surface de l'eau. Il a été étudié dans les deux zones. Différentes configurations et conditions opératoires ont été testées afin de comprendre les phénomènes d’interaction : tube de guidage, hélice complémentaire RTP, vitesse de rotation, niveau de submersion des pales de la turbine. La partie expérimentale sur l’hydrodynamique et les champs d'écoulement montre que le mode de fonctionnement en pompage vers le bas (brassage) avec tube de guidage procure les meilleurs résultats en termes de mélange si on se réfère aux champs d'écoulement et à la mesure du temps de mélange. Pour le mode de fonctionnement en pompage vers le haut (aération), les résultats expérimentaux montrent que la configuration du système complet est la plus efficace si on considère le transfert d’oxygène, les vitesses moyennes, l'intensité de l'écoulement turbulent et le temps de mélange. Il est constaté que la meilleure efficacité d'aération standard est atteinte (SAEb = 2.65 kgO2kw-1h-1) lorsque le système complet est utilisé. L'efficacité d'aération standard à 20°C la plus élevée au niveau du spray d'eau est obtenue ((ESP)20 = 51,3%) avec la configuration du système complet. Plusieurs modèles sont proposés pour calculer le transfert d'oxygène dans la cuve et dans le spray, la consommation énergique et le temps de mélange. Ces relations permettent d’évaluer l’influence des différents paramètres géométriques et de fonctionnement dans des systèmes similaires à une échelle industrielle. / A new surface aeration system for water and wastewater treatment has been studied. Its uniqueness lies in its ability to operate in two modes: aeration or simply blending (mixing) by just reversing the direction of rotation. An experimental plant has enabled to focus on mass transfer performance and hydrodynamics. The flow pattern and the velocity field measurements inside the agitated tank were performed by both the Laser Doppler Velocimetry (LDV) and the Particle Image Velocimetry (PIV) techniques for the single phase (Mixing) mode and for the two phases (Aeration) mode. The oxygen mass transfer occurs both in the water bulk and in the spray above water surface and has been independently investigated. Different configurations and operational conditions were tested during the experimental part in order to interpret phenomenon effect of the draft tube and RTP propeller, rotational speed, turbine blades submergence and else on the flow field and the oxygen mass transfer in the agitated system that produced mainly by a cone shape turbine. The experimental part dealing with hydrodynamics and flow field shows that the down-pumping operation mode with the draft tube has the most convenient results in the mixing mode with respect to turbulent flow field and mixing time. Whilst for the up-pumping aeration mode the hydrodynamics experimental results show the whole system configuration is the most convenient with regarded to mean velocities, turbulent flow intensity and mixing time. For the oxygen mass transfer experimental part, it is found that the highest standard liquid bulk aeration efficiency is achieved (SAEb = 2.65 kgO2 kw-1h-1) when the whole system configuration is used. The highest standard aeration efficiency at 20°C for the water spray zone is accomplished ((Esp)20 = 51.3 %) with the whole system configuration. Several correlations models have been derived for the oxygen mass transfer in water bulk and spray zones, power consumption and mixing time, on the basis of experimental results. They can be used as tools to estimate these parameters for geometrical and dynamical similar systems at industrial scales.

Page generated in 0.1111 seconds