• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 2
  • 1
  • Tagged with
  • 17
  • 17
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FABRICATION OF ADVANCED ELECTRODE MATERIALS FOR ELECTROCHEMICAL SUPERCAPACITOR APPLICATIONS

Poon, Ryan January 2019 (has links)
Electrochemical supercapacitors (ESs) are currently under development for electronics and automotive applications due to their hybrid properties inherited from batteries and capacitors. ESs exhibit higher power densities than batteries and energy densities than capacitors, and offer long cyclic life and rapid charge-discharge suitable for many applications. A promising candidate of electrode materials is manganese dioxide (MnO2), which has the advantages of high theoretical capacitance, low cost and environmentally friendly. However, the low electronic and ionic conductivities of MnO2 have limited its performance for practical applications. It has been demonstrated in literature that composite materials, which consist of conductive additives such as multi-walled carbon nanotubes (MWCNTs) and MnO2 can address this problem, however further investigations are required to produce ESs with superior performance for real-world applications. In this dissertation, novel colloidal fabrication techniques have been developed and advanced dispersants were employed to fabricate advanced nanocomposite electrodes. MnO2-MWCNTs composite electrode was fabricated with use of multifunctional dispersant. The multifunctional dispersant cetylpyridinium chloride (CPC) showed good dispersion of MWCNTs and capability of forming complex with the precursor of MnO2, which improved the homogeneity of the composite and generated unique morphology. The MnO2-MWCNTs composite electrode fabricated exhibited remarkable areal capacitance at high active mass loadings. New scalable fabrication technique was developed for MnO2-MWCNTs by using high solubility sodium permanganate (NaMnO4) precursor. The fabricated composite electrode showed superior performance compared to electrodes fabricated by other colloidal techniques at similar mass loading. Liquid-liquid extraction was employed to address the problem of particles agglomeration upon drying. Bio-inspired advanced extractor lauryl gallate (LG) was used for liquid-liquid extraction of particles. LG has organic catechol group allowed for strong adsorption on inorganic particles. Using LG as an advanced extractor has facilitated the transfer of particles from aqueous to organic phase to prevent agglomeration associated with drying procedure and improved mixing with MWCNTs. Advanced dispersants from bile acid salts and charged aromatic dyes families such as sodium taurodeoxychloate (TDS) and tolonium chloride (TL) were used as MWCNTs dispersants, to fabricate composite electrode with alternative metal oxides such as Mn3O4 and V2O3. Furthermore, 3,4-dihydroxybenzaldhyde (DHB) was investigated as a dispersing agent for Mn3O4 and used to fabricate Mn3O4-MWCNTs composite electrode with TL by Schiff base formation. Mn3O4 offers the advantages of small particle size compared to MnO2, and can be converted to MnO2 by electrochemical cycling to enhance capacitive performance. V2O3 was considered as an alternative to MnO2 due to its metallic conductivity at room temperature. An activation procedure has been developed, which promoted the formation of capacitive V2O5 surface layer on conductive V2O3 to increase capacitance. The advanced dispersants have shown excellent dispersion of MWCNTs in aqueous solutions at low concentrations and facilitated the formation of homogeneous composite with Mn3O4 and V2O3. Activation procedures were developed for the Mn3O4 and V2O3 composite electrodes, and the electrodes with high active mass loadings showed exceptional performance after activation. / Thesis / Doctor of Philosophy (PhD) / In modern society, the demand for clean and renewable energy have grown drastically and there is a need in development of advanced energy storage devices. Currently, the most common energy storage devices are batteries or conventional capacitors. Batteries can store a large amount of energy, however they are limited by their low power performance. Capacitors can charge and discharge rapidly, but the amount of energy stored is relatively low. Other than batteries and capacitor, electrochemical supercapacitors are emerging energy storage devices that offer the advantages of high power and energy density, fast charge-discharge and long lifetime. The objective of this work was to develop advanced nanocomposite electrode materials for electrochemical supercapacitor applications. New colloidal processing strategies have been developed and advanced dispersants were employed for the fabrication of high performance nanocomposites for electrochemical supercapacitor applications. The results presented in this work showed exceptional performances compared to literature data and paved a new way for further developments.
2

Interakce buňek s biomateriály v tkáňovém inženýrství tvrdých a měkkých tkání / Cell-biomaterial interactions in hard and soft tissue engineering

Zárubová, Jana January 2016 (has links)
Tissue engineering is an interdisciplinary field which aims to create substitutes of damaged tissues by combining cells with biomaterials. Cells are extremely sensitive to their microenvironment and so the cell response to biomaterials can be regulated by different extrinsic stimuli and alterations of biomaterial properties. Successful implant integration into the tissue can therefore be promoted by appropriate surface roughness, chemical composition, adhesion ligand density, as well as the availability of growth factors. This thesis mainly focuses on the development of orthopedic replacements and the improvement of the currently used blood vessel prostheses. Through the study of cell-biomaterial interactions, it was demonstrated that superimposed topography with features ranging from the nano to micro scale promotes cell spreading, proliferation, and the metabolic activity of osteoblast-like cells. Moreover, when comparing the chemical composition of biomaterials for orthopedic implants, higher osteoblast densities were observed on composites with 5-15 vol. % of calcium phosphate nanoparticles, while concentrations of 25 vol. % did not support cell proliferation. Cell viability, however, was not affected. In vivo, a more intensive formation of new bone tissue, was found on samples containing...
3

Interfacial Modification of Microcellular Carbon: Influence of Ceramic and Carbon Nanotube Coatings

Karumuri, Anil Kumar 29 December 2009 (has links)
No description available.
4

Printing conductive traces to enable high frequency wearable electronics applications

Lim, Ying Ying January 2015 (has links)
With the emergence of the Internet of Things (IoT), wireless body area networks (WBANs) are becoming increasingly pervasive in everyday life. Most WBANs are currently working at the IEEE 802.15.4 Zigbee standard. However there are growing interests to investigate the performance of BANs operating at higher frequencies (e.g. millimetre-wave band), due to the advantages offered compared to those operating at lower microwave frequencies. This thesis aims to realise printed conductive traces on flexible substrates, targeted for high frequency wearable electronics applications. Specifically, investigations were performed in the areas pertaining to the surface modification of substrates and the electrical performance of printed interconnects. Firstly, a novel methodology was proposed to characterise the dielectric properties of a non-woven fabric (Tyvek) up to 20 GHz. This approach utilised electromagnetic (EM) simulation to improve the analytical equations based on transmission line structures, in order to improve the accuracy of the conductor loss values in the gigahertz range. To reduce the substrate roughness, an UV-curable insulator was used to form a planarisation layer on a non-porous substrate via inkjet printing. The results obtained demonstrated the importance of matching the surface energy of the substrate to the ink to minimise the ink de-wetting phenomenon, which was possible within the parameters of heating the platen. Furthermore, the substrate surface roughness was observed to affect the printed line width significantly, and a surface roughness factor was introduced in the equation of Smith et al. to predict the printed line width on a substrate with non-negligible surface roughness (Ra ≤ 1 μm). Silver ink de-wetting was observed when overprinting silver onto the UV-cured insulator, and studies were performed to investigate the conditions for achieving electrically conductive traces using commercial ink formulations, where the curing equipment may be non-optimal. In particular, different techniques were used to characterise the samples at different stages in order to evaluate the surface properties and printability, and to ascertain if measurable resistances could be predicted. Following the results obtained, it was demonstrated that measurable resistance could be obtained for samples cured under an ambient atmosphere, which was verified on Tyvek samples. Lastly, a methodology was proposed to model for the non-ideal characteristics of printed transmission lines to predict the high frequency electrical performance of those structures. The methodology was validated on transmission line structures of different lengths up to 30 GHz, where a good correlation was obtained between simulation and measurement results. Furthermore, the results obtained demonstrate the significance of the paste levelling effect on the extracted DC conductivity values, and the need for accurate DC conductivity values in the modelling of printed interconnects.
5

Tuning the long-term properties to control biodegradation by surface modifications of agricultural fibres in biocomposites

Kittikorn, Thorsak January 2013 (has links)
Sustainable polymeric materials put emphasis on mastering the whole life-cycle of polymeric materials. This includes the choice of raw materials, selection of synthesis and processing, environmental impact during long-term use followed by detailed knowledge about recycling and waste management.  Within this large efforts are put in the design and development of new biocomposites using renewable fibres instead of inert ones. The thesis deals with surface modifications of agricultural fibres and the design of biocomposites with optimal long-term properties balancing the potential risk for biodegradation.  The first part of this thesis involved surface modifications of oil palm fibres and production of biocomposites with PP as matrix. The chemical surface modifications of oil palm fibres explored propionylation, PPgMA grafting via solution modification and reactive blending and vinyltrimethoxy silanization as methods. All modified fibre/PP biocomposites showed improvements in the mechanical properties followed also by an improvement of water resistance. In comparison with unmodificed fibres/PP matrix the highest water resistance after the surface modifications of oil palm fibres were observed for silanization followed by PPgMA modified,  PPgMA blending and  propionylation. The second part aimed at producing fully biodegradable biocomposites and analysing the resulting properties with respect to potential risk for biodegradation. Sisal fibres were incorporated in PLA and PHBV and the resulting risk for biodegradation using a fungus, Aspergillus niger, monitored. Neat PLA and PHBV were compared with the corresponding biocomposites and already without fibres both polymers were notably biodegraded by Aspergillus niger. The degree of biodegradation of PLA and PHBV matrices was related to the extent of the growth on the material surfaces. Adding sisal fibres gave a substantial increase in the growth on the surfaces of the biocomposites. Correlating the type of surface modification of sisal fibres with degree of biodegradation, it was demonstrated that all chemically modified sisal/PLA biocomposites were less biodegraded than unmodified sisal biocomposites.  Propionylated sisal/PLA demonstrated the best resistance to biodegradation of all biocomposites while sisal/CA/PLA demonstrated high level of biodegradation after severe invasion by Aspergillus niger. In general, the biodegradation correlated strongly with the degree of water absorption and surface modifications that increase the hydrophobicity is a route to improve the resistance to biodegradation. Designing new biocomposites using renewable fibres and non-renewable and renewable matrices involve the balancing of the increase in mechanical properties, after improved adhesion between fibres and the polymer matrix, with the potential risk for biodegradation. / <p>QC 20130325</p>
6

Influence of Nanoscale Surface Modifications on the Fatigue Resistance of Medically Relevant Metals

Ketabchi, Amirhossein 07 May 2013 (has links)
With an increasingly aging population, a significant challenge in implantology is the creation of biomaterials that actively promote and accelerate tissue integration while offering excellent mechanical properties. Engineered surfaces with superimposed micro and nanoscale topographies showed great potential to control and direct biomaterial-host tissue interactions. However, these modified surfaces require a careful assessment to prevent potential adverse effects on the fatigue resistance, a factor which may ultimately cause premature failure of biomedical implants. In this context, the surfaces of two widely used biocompatible metals, namely CP Ti and Ti-6Al-4V, were engineered through simple yet efficient chemical treatments which demonstrated the ability to confer exciting new bioactive capacities. The qualitative and quantitative assessments of the fatigue resistance of polished and treated metals were carried out. Results from this study highlight the importance of mechanical considerations in the development and evaluation of nanoscale surface treatments for metallic biomedical implants.
7

Influence of Nanoscale Surface Modifications on the Fatigue Resistance of Medically Relevant Metals

Ketabchi, Amirhossein January 2013 (has links)
With an increasingly aging population, a significant challenge in implantology is the creation of biomaterials that actively promote and accelerate tissue integration while offering excellent mechanical properties. Engineered surfaces with superimposed micro and nanoscale topographies showed great potential to control and direct biomaterial-host tissue interactions. However, these modified surfaces require a careful assessment to prevent potential adverse effects on the fatigue resistance, a factor which may ultimately cause premature failure of biomedical implants. In this context, the surfaces of two widely used biocompatible metals, namely CP Ti and Ti-6Al-4V, were engineered through simple yet efficient chemical treatments which demonstrated the ability to confer exciting new bioactive capacities. The qualitative and quantitative assessments of the fatigue resistance of polished and treated metals were carried out. Results from this study highlight the importance of mechanical considerations in the development and evaluation of nanoscale surface treatments for metallic biomedical implants.
8

In vitro Untersuchung der Fibroblastenadhäsion und -proliferation an oberflächenmodifizierten Titanwerkstoffen

Richard, Matthias 15 October 2002 (has links)
Ein in der chirurgischen Implantologie nicht gelöstes Problem ist die mangelhafte Versiegelung von Implantaten, die Haut und Weichgewebe penetrieren, sogenannte Hautdurchleitungen. Infolgedessen kommt es hier zu rezidivierenden oder chronischen periimplantären Entzündungen. Ziel der Studie war es, ein in-vitro Modell zu entwickeln, mit dem es möglich ist, die Adhäsion und Proliferation von Fibroblasten an unterschiedlich oberflächen- veränderten Titanwerkstoffen zu untersuchen. Verwendet wurden polierte, sand- und glaskugelgestrahlte, Kollagen-A- und Silikon- beschichtete Titanplättchen. Die Hälfte dieser Plättchen wurde noch zusätzlich mit dem Radio-Frequency-Glow-Discharge-Verfahren (RFGDT) physikalisch vorbe- handelt. Somit ergaben sich insgesamt 10 Oberflächenmodifikationen. Die ober- flächenveränderten Titanplättchen wurden in Wells einer 96er Mikrotiterplatte ein- gebracht. Anschließend wurden die Wells mit Nährstofflösung aufgefüllt und mit 1 x 104 Fibroblasten (humane Fibroblasten) beschickt. Der Kultivierungszeitraum zur Austestung der Zelladhäsion betrug 12 Stunden, für die Proliferation 72 Stunden. Nach Ablösen der Fibroblasten von den Titanträgern erfolgte die Zellzählung in der Neubauer-Zählkammer. Die quantitativ gewonnenen Ergebnisse wurden mathematisch-statistisch aufgearbeitet. Parallel zu jedem Versuchsdurchgang wurde der Zellbewuchs auf jeweils zwei Titanplättchen pro Oberflächenart rasterelektronenmikroskopisch qualitativ analysiert und deskriptiv-statistisch anhand eines eigens entwickelten Scores (Werte 1 - 7) ausgewertet. Das RFGD-Verfahren erwies sich bezüglich der Adhäsion bei sand- und kugelgestrahlten sowie bei Kollagen-A-bschichteten Trägern den physikalisch unbehandelten überlegen. Für polierte Titanträger ließ sich keine Aussage treffen, bei Silikon-beschichteten Trägern war das RFGDT von Nachteil. Fibroblasten adhärierten am besten an polierten, physikalisch unbehandelten Titanwerkstoffen. An Silikon-beschichteten Trägern kam es zur geringsten Fibroblastenanhaftung. Bezüglich des Gesamteffektes von Adhäsion und Proliferation, also nach 72-stündiger Zellkultivierung, ergab sich eine deutliche Überlegenheit der polierten und Kollagen-A-beschichteten Oberflächen, die physikalisch mit dem RFGD-Verfahren vorbehandelt waren. Auch hier wiesen die Silikon-beschichteten Träger den geringsten Fibroblastenbewuchs auf. Überdies erwies sich, dass eine schlechtere Adhäsion durch verbesserte Proliferation der Fibroblasten wett gemacht werden kann und vice versa. In der REM ließ sich an den polierten Titanplättchen eine nahezu perfekte Anpassung der Fibroblasten an die Werkstoffoberflächen nachweisen. Mit Hilfe der qualitativen rasterelektronenmikroskopischen Befunde lässt sich jedoch nur das zu erwartende Ausmaß der Zelladhäsion prognostizieren. Hinsichtlich der Fibroblastenproliferation kommt es zwischen qualitativ und quantitativ ermittelten Resultaten zu teilweise deutlichen Unterschieden. Der Vergleich der gewonnenen Resultate mit den Ergebnissen einer Studie der Keratinozytenadhäsion und -proliferation an identischen Werkstoffoberflächen zeigt, dass beide Zellspezies, Fibroblasten und Keratinozyten, gleichermaßen den besten Bewuchs an Kollagen-A-dotierten und physikalisch vorbehandelten Oberflächen aufweisen. Während jedoch Fibroblasten an polierten Titanwerkstoffen das beste Adhäsions- und Proliferationsverhalten zeigen, kommt es an diesen Oberflächen zum geringsten Keratinozytenbewuchs. Andererseits zeigen Fibroblasten an Silikon- beschichteten Werkstoffen das signifikant schlechteste Wachstum, wohingegen Silikon-beschichtete gegenüber sandgestrahlten Titanoberflächen für Keratinozyten von Vorteil sind. Zwecks Überprüfung der in vitro gewonnenen Resultate ist eine Versuchsreihe mit Kollagen-A-beschichteten Titanwerkstoffen am lebenden Organismus erforderlich. Es ist nicht auszuschließen, dass es in vivo aufgrund der Komplexität und Variabilität an Einflussgrößen noch zu deutlichen Abweichungen von den in vitro ermittelten Ergebnissen kommen kann. Zudem fallen die hier gewählten Kultivierungszeiträume beim lebenden Organismus in die Periode der Entzündungsphase, welche der Implantation eines Biomaterials folgt. Auch die hier vorgestellte Studie belegt, dass das Design eines idealen Implantats für jede Zellpopulation, mit welcher der Werkstoff in Berührung kommt, eine spezifische Oberflächentextur erfordert. / An unsolved problem in surgical implantology is the inadequately sealed junction between transcutaneous implants and surrounding skin or soft tissue. This results in reoccurring or chronic peri-implantary inflammation. The purpose of this study was to develop an in-vitro model enabling the examination of adhesion and proliferation of fibroblasts on surface variations of titanium materials. The surfaces employed in this study were polished, sandblasted, glassblasted, collagen-A and silicon coated titanium platelets. Additionally, half of these platelets had been preprocessed with radio frequency glow discharge treatment (RFGDT). Thus, in total ten surface modifications have been involved. Platelets were deposited in wells of a 96 micro-titre plate. Then these wells were filled with nutritive solution and loaded with 1 x 104 fibroblasts (human fibroblasts). Cultivation period was 12 hours for testing cell adhesion and 72 hours for testing proliferation. After being detached from the titanium carrier cells were counted in a Neubauer counting chamber. The quantitative results were subjected to mathematical-statistical appraisal. In parallel to each test procedure cell growth on two titanium platelets per surface modification was subjected to quantitative analysis on an electron microscopic grid and to descriptive-statistical evaluation with a custom-developed scoring system (values 1-7). The RFGD process gave improved adhesion results on sandblasted and glassblasted as well as on collagen-A coated surfaces. For silicon coated carriers RFGDT showed a negative influence were as no significant results could be achieved for polished titanium carriers. Best fibroblast adhesion was observed on polished, physically untreated titanium materials, poorest adhesion was determined on silicon-coated material. The combined effect of adhesion and proliferation observed after 72 hour cell cultivation was obviously superior in the polished and collagen A coated surfaces which had been pretreated with RFGD. Silicon coated surfaces exhibited the lowest fibroblast growth. Poorer adhesion can be compensated by improved fibroblast proliferation and vice versa. Almost perfect adaptation of fibroblasts to material surface was exhibited by REM on polished titanium platelets. The findings established in the electron microscopic grid can predict only the expected extent of cell adhesion. In some cases there is a significant difference between results of fibroblast proliferation determined qualitatively on one hand and quantitatively on the other. A comparison of the results gained in this work with those of a study of adhesion and proliferation of keratinocytes on identical surfaces shows that both cell species, fibroblasts as well as keratinocytes, demonstrate the best growth on collagen-A loaded, physically pre-treated surfaces. Whereas fibroblasts show the best adhesive and proliferative behaviour on polished titanium materials, keratinocytes feature the lowest growth. Conversely, fibroblasts grow poorest on silicon coated surfaces, whereas keratinocytes favour silicon coated materials over sandblasted titanium surfaces. In order to monitor the results gained in vitro, an in vivo test series with collagen-A- loaded titanium materials would be appropriate. It cannot be excluded that an in vivo study might generate significant deviations from results established in vitro because of the complex and variable nature of parameters. In addition, cultivation periods chosen in this study, transpire in the living organism during the inflammation phase following implantation of a biomaterial. Further studies are required to comprehend the epithelial and connective tissue organisation process in the implant environment. The study presented here verifies that the design for ideal implant requires a specific surface for each cell population with which the material comes into contact.
9

Biokompatibilita implantabilních materiálů se zaměřením na titanové dentální implantáty / Biocompatibility of Implantable Materials Focused on Titanium Dental Implants

Moztarzadeh, Amin January 2017 (has links)
This dissertation thesis deals with the evaluation of biocompatibility and osseointegration of nanostructured titanium materials used for dental implants. Bulk material topography and surface modification of titanium are currently of intense research mainly due to the significant impact on biocompatibility and improvement of osseointegration of dental implants. In the theoretical part are described types of titanium material and different methods of its surface modification. In vitro and in vivo biocompatibility and osseointegration tests are described as well. The experimental work consists of two parts of experiments. In the first experiment, we examined how grain size of nanostructured titanium material influences the behaviour of fibroblastic as well as osteoblastic cells growth on its surface. The experimentally obtained data were statistically analysed and discussed. Grain size was proven to be an important factor that influenced not only the strength of material but also its interactions with cells. The second experiment describes current methods used in the experimental evaluation of osseointegration of dental implants. The results of histological staining methods are illustrated and compared. A standardized and reproducible technique for stereological quantification of bone-implant contact...
10

Structure, élaboration, propriétés et modification de surface de fibres creuses non-oxydes à partir de polymères pré-céramiques pour des applications membranaires / Design, processing, properties and surface modification of polymer-derived Silicon-containing non-oxide ceramic hollow fibers for membrane application

Viard, Antoine 10 November 2016 (has links)
Les matériaux céramiques se sont énormément développés durant le dernier siècle et ne cessent d'attirer l'attention pour diverses applications. Cela tient aux propriétés nombreuses et variées qu'elles peuvent présentées. Un avantage certain de ce type de matériaux réside dans leurs stabilités mécanique, thermique et chimique, ce qui en fait des candidats de choix pour des applications dans des environnements sévères. Ceci est notamment observable dans le domaine des membranes. En effet, malgré leurs coût réduit, les membranes polymères, constituant l'essentiel des membranes utilisées à ce jour, sont très sensibles à l'environnement dans lequel elles sont utilisées et nécessitent d'être renouvelées régulièrement. Cela justifie la recherche d'alternatives, comme par exemple les céramiques plus résistantes. Différentes mises en forme sont possibles pour la formation de membranes, mais parmi celles-ci, les formes en tubes ont suscité un engouement certain en raison des avantages en termes de rapport surface/volume et de la résistance au transport de masse moindre. La majorité des céramiques utilisées et commercialisées reposent sur des compositions chimiques à base d'oxydes. Il apparaît cependant que ces matériaux trouvent leurs limites en termes de vieillissement et de stabilité à très haute température. Un autre type de céramiques, les céramiques non-oxydes à base de silicium, présentent des propriétés très intéressantes, pouvant potentiellement répondre à ces problématiques. De tels matériaux sont produits par la voie PDC (Polymer Derived Ceramic), notamment en raison de l'impossibilité de procéder autrement pour la majorité d'entre eux. Cette méthode consiste à synthétiser des polymères pré-céramiques pouvant être convertis en céramiques par un traitement thermique adéquat. Cela permet notamment un très bon contrôle de la structure chimique de la céramique finale, et donc une grande versatilité. Parmi ces matériaux, le système quaternaire Si-B-C-N a particulièrement attiré l'attention en raison de ses propriétés thermostructurales couplées à sa stabilité chimique singulière. Les travaux de thèses présents se sont donc focalisés sur l'utilisation de cette céramique. Un autre avantage de la voie des polymères pré-céramiques réside dans les mises en forme rendues possibles par l'utilisation de polymères. Cette méthode a déjà été utilisée abondamment pour produire des fibres céramiques avec des diamètres de l'ordre de la dizaine de microns, notamment par le recours à la technique de filage en fondu (melt-spinning en anglais). L'objectif principal de cette thèse est la production de fibres creuses et de capillaires céramiques SiBCN en se basant sur cette méthode de mise en forme. Le but est la formation de supports membranaires très stables à un coût relativement faible comparé aux procédés généralement utilisés pour la mise en forme de céramiques, impliquant souvent un traitement de frittage à très haute température. Ces supports offriront à terme des applications en séparation de gaz ou en traitement de l'eau. Plus exactement, le chapitre 1 concerne l'état de l'art et permet de présenter le contexte de ces travaux, ainsi que leur intérêt. Le chapitre 2 présente les techniques de synthèses mises en œuvre et les matériaux utilisés. Le chapitre 3 est consacré à la production de fibres creuses céramiques SiBCN en présentant notamment une étude complète de la structure chimique du polymère utilisé, ainsi que l'évolution de la microstructure de la céramique résultante à haute température. Le chapitre 4 a pour objet la formation de capillaires céramiques SiBCN. Ici aussi, le précurseur utilisé est caractérisé en détail, de même que la céramique issue de sa pyrolyse. Le dernier chapitre consiste en une ouverture et propose différentes méthodes de modification de surface des fibres creuses et des capillaires élaborés dans les chapitres 3 et 4. / New ceramic materials have progressively emerged during the last century and continuously drew attention for diverse applications. This comes from the numerous and various properties they can exhibit. A great advantage of this type of materials is their mechanical, thermal and chemical stabilities, that makes ceramics of great interest for applications in harsh environments. This trend is especially perceptible in the field of membranes. In fact, despite their moderate cost, polymer membranes, which are mostly used, are very sensitive to the environment in which they are used and require to be replaced regularly. This justifies the search for alternatives and for more resistant materials like ceramics. Various shaping are possible to build a membrane, but among these, shapings in form of tubes have aroused particular enthusiasm because of their advantages in terms of surface/volume ratio and of lower mass transport resistance. Most of used and commercialized ceramics are based on oxide chemical compositions. This constitutes a drawback concerning the aging of the membranes and their stability at very high temperatures. Another type of ceramics, non oxide silicon based ceramics, exhibits very interesting properties which could eventually palliate these problems. In general, such materials are produced through the PDC route (Polymer Derived Ceramic route), especially because of the impossibility to proceed by more conventional methods for many of them. The principle of this bottom-up method is to synthesize preceramic polymers which can be converted into ceramics through an appropriate heat treatment. This enables a very good control of the chemical structure of the final ceramics and so a great versatility. Among these materials, the quaternary system Si-B-C-N has aroused big interest because of its extraordinary thermostructural properties coupled to chemical inertness. Thus, the present work has been focused on the preparation and application of this ceramic. Another advantage of the PDC route can be found in the possible shaping arising from the polymeric nature of the precursors. This method has been widely used for the production of thin ceramic fibers by using the melt-spinning process. The main objective of this thesis is the design of SiBCN ceramic hollow fibers and capillaries based on this shaping method. The aim is the preparation of very stable membrane supports at relatively low costs compared to conventional processes used to shape ceramic materials, often involving a sintering treatment at a very high temperature. These supports could be used in gas separation and water treatment applications. More precisely, chapter 1 presents a state of the art and allows to give the context and the motivations of this work. Chapter 2 discusses on the synthesis techniques and on the used methods. Chapter 3 is dedicated to the production of SiBCN ceramic hollow fibers by studying in details the precursors chemical structure used for this purpose before investigating its ceramic conversion and the evolution of the microstructure of the resulting ceramic. Chapter 4 is dealing with the production of SiBCN ceramic capillaries. The precursor used is characterized as well as the resulting ceramic. The last chapter gives some perspectives by proposing different methods of surface modifications of the hollow fibers and the capillaries presented in chapters 3 and 4.

Page generated in 0.1119 seconds