Spelling suggestions: "subject:"polymère céramique"" "subject:"polymère vitrocéramique""
1 |
Elaboration de revêtements de nitrure ( h-BN et SI3N4) par pyrolyse de polymere précéramique : caractérisations chimiques, structurales, mécaniques et tribologiquesYuan, Sheng 27 March 2013 (has links)
Pas de résumé / No abstract
|
2 |
Développement de matrice Si-C-(B,N) de composites à renfort fibreux par modification chimique de polycarbosilanes/polysilazanes / Development of Si-C- (B, N) matrix in fiber reinforced composite by chemical modification of polycarbosilanes / polysilazanesSchmidt, Marion 27 November 2017 (has links)
Les céramiques de type non-oxyde à base de silicium (SiC, Si3N4, Si-C-N) ont été très largement étudiées comme matrice dans le domaine des Composites à Matrices Céramiques (CMCs) en raison de leurs propriétés thermostructurales généralement très supérieures à celles des matériaux plus conventionnels comme les métaux et les céramiques de type oxyde. Ces matériaux proposent par ailleurs des propriétés mécaniques (dureté, résistance au fluage et à la rupture) et une résistance à l’oxydation de premier plan. Comme matrices, ils sont généralement produits en voie gazeuse par la méthode CVI (Chemical Vapor Infiltration). Dans le cadre de la présente thèse, nous nous intéressons à leur élaboration en voie liquide à travers la méthode PDCs (Polymer Derived Ceramics), qui pourra être éventuellement couplée à terme à la méthode CVI, dont la mise en œuvre est plus aisée et les coûts de production des CMCs plus faibles. L’objectif principal est de travailler la chimie de polymères précéramiques commerciaux afin, d’une part, d’optimiser les étapes d’imprégnation des préformes fibreuses et de pyrolyse des composites ‘crus’ obtenus (Polymer Infiltration and Pyrolysis (PIP)) et d’autre part d’améliorer les propriétés thermostructurales des composites SiC et Si-C-N pour un fonctionnement à des températures de l’ordre de 1500°C. Après une étude bibliographique sur la thématique abordée (chapitre 1) et un chapitre 2 dédié à la partie expérimentale et à la description des outils de caractérisation, les travaux de thèse se sont orientés dans les chapitres 3 et 4 vers la modification de polymères précéramiques commerciaux comme l’allyhydridopolycarbosilane (AHPCS, précurseur SiC) et le poly(vinylméthyl)-co-(hydridométhyl)silazane (HTT1800, précurseur Si-C-N) par l’élément bore. L’idée générale est de diminuer les températures de gélification de ces polymères tout en augmentant leur rendement céramique et d’obtenir, après pyrolyse, des céramiques amorphes de type Si-B-C-(N) avec une meilleure stabilité thermique à haute température. Dans le chapitre 5, les travaux se sont dirigés vers la préparation de mélange HTT1800-perhydridopolysilazane (PHPS, précurseur Si3N4) pour s’affranchir de la présence de carbone libre dans les matériaux finaux. Une caractérisation complète, allant de la structure chimique des polymères jusqu’à l’évolution de la microstructure des matériaux finaux traités à haute température, a été conduite dans chacun des chapitres. La fabrication de pièces denses, par la méthode dite de casting, à partir des polymères sélectionnés a permis d’accéder aux propriétés mécaniques des matériaux. Des essais préliminaires de fabrication de composites sont présentés en fin de chaque chapitre. / Non-oxide Si-based ceramics (SiC, Si3N4, Si-C-N) have been extensively studied as matrices in Fiber-Reinforced Ceramics Matrix Composites (CMCs) because of their thermostructural properties which are generally significantly higher than those displaying by more conventional materials such as metals and oxide ceramics. These materials also offer superior mechanical properties (hardness, resistance to creep and rupture) and excellent resistance toward oxidation. As a matrix, they are produced in gas phase by the well-known Chemical Vapor Infiltration (CVI) process. Within the framework of the thesis, we focus on their synthesis in liquid phase through the PDCs (Polymer Derived Ceramics) route because of its easier access and lower production cost. The main objective is to focus on the chemistry of preceramic polymers to 1) optimize each step of the PIP (Infiltration and Pyrolysis Polymer) process and 2) improve the thermostructural properties of SiC, Si-C-N matrix composites prepared from commercially-available preceramic polymers. After a state-of-the art part (Chapter 1) on the targeted topic and an experimental part completed by the description of the characterization tools (Chapter 2), the manuscript focused on the modification of commercial preceramic polymers such as allylhydridopolycarbosilane (AHPCS, SiC precursor) and poly(vinylmethyl)-co-(hydridomethyl)silazane (HTT1800, Si-C-N precursor) with boron elements. The idea behind this work was to reduce the gelification temperature of these polymers while to increase their ceramic yield. Thus, after pyrolysis, we obtain amorphous Si-B-C-(N) ceramics with better thermal stability at high temperature. This work is described in the chapters 3 and 4 of the manuscript. In chapter 5, the work concerned the preparation of polymer blends based on HTT1800 and perhydridopolysilazane (PHPS, precursor Si3N4). The idea behind the chapter 5 was to avoid the presence of free carbon in the final materials. A complete characterization, ranging from the chemical structure of the polymers to the evolution of the microstructure of the final materials, is done in each chapter. Dense pieces were prepared by the casting method from the selected polymers and their mechanical properties have been investigated. Composite materials have been also prepared to evaluate the quality of interface between the matrix and the surface of the fibers which is presented at the end of each chapter.
|
3 |
Structure, élaboration, propriétés et modification de surface de fibres creuses non-oxydes à partir de polymères pré-céramiques pour des applications membranaires / Design, processing, properties and surface modification of polymer-derived Silicon-containing non-oxide ceramic hollow fibers for membrane applicationViard, Antoine 10 November 2016 (has links)
Les matériaux céramiques se sont énormément développés durant le dernier siècle et ne cessent d'attirer l'attention pour diverses applications. Cela tient aux propriétés nombreuses et variées qu'elles peuvent présentées. Un avantage certain de ce type de matériaux réside dans leurs stabilités mécanique, thermique et chimique, ce qui en fait des candidats de choix pour des applications dans des environnements sévères. Ceci est notamment observable dans le domaine des membranes. En effet, malgré leurs coût réduit, les membranes polymères, constituant l'essentiel des membranes utilisées à ce jour, sont très sensibles à l'environnement dans lequel elles sont utilisées et nécessitent d'être renouvelées régulièrement. Cela justifie la recherche d'alternatives, comme par exemple les céramiques plus résistantes. Différentes mises en forme sont possibles pour la formation de membranes, mais parmi celles-ci, les formes en tubes ont suscité un engouement certain en raison des avantages en termes de rapport surface/volume et de la résistance au transport de masse moindre. La majorité des céramiques utilisées et commercialisées reposent sur des compositions chimiques à base d'oxydes. Il apparaît cependant que ces matériaux trouvent leurs limites en termes de vieillissement et de stabilité à très haute température. Un autre type de céramiques, les céramiques non-oxydes à base de silicium, présentent des propriétés très intéressantes, pouvant potentiellement répondre à ces problématiques. De tels matériaux sont produits par la voie PDC (Polymer Derived Ceramic), notamment en raison de l'impossibilité de procéder autrement pour la majorité d'entre eux. Cette méthode consiste à synthétiser des polymères pré-céramiques pouvant être convertis en céramiques par un traitement thermique adéquat. Cela permet notamment un très bon contrôle de la structure chimique de la céramique finale, et donc une grande versatilité. Parmi ces matériaux, le système quaternaire Si-B-C-N a particulièrement attiré l'attention en raison de ses propriétés thermostructurales couplées à sa stabilité chimique singulière. Les travaux de thèses présents se sont donc focalisés sur l'utilisation de cette céramique. Un autre avantage de la voie des polymères pré-céramiques réside dans les mises en forme rendues possibles par l'utilisation de polymères. Cette méthode a déjà été utilisée abondamment pour produire des fibres céramiques avec des diamètres de l'ordre de la dizaine de microns, notamment par le recours à la technique de filage en fondu (melt-spinning en anglais). L'objectif principal de cette thèse est la production de fibres creuses et de capillaires céramiques SiBCN en se basant sur cette méthode de mise en forme. Le but est la formation de supports membranaires très stables à un coût relativement faible comparé aux procédés généralement utilisés pour la mise en forme de céramiques, impliquant souvent un traitement de frittage à très haute température. Ces supports offriront à terme des applications en séparation de gaz ou en traitement de l'eau. Plus exactement, le chapitre 1 concerne l'état de l'art et permet de présenter le contexte de ces travaux, ainsi que leur intérêt. Le chapitre 2 présente les techniques de synthèses mises en œuvre et les matériaux utilisés. Le chapitre 3 est consacré à la production de fibres creuses céramiques SiBCN en présentant notamment une étude complète de la structure chimique du polymère utilisé, ainsi que l'évolution de la microstructure de la céramique résultante à haute température. Le chapitre 4 a pour objet la formation de capillaires céramiques SiBCN. Ici aussi, le précurseur utilisé est caractérisé en détail, de même que la céramique issue de sa pyrolyse. Le dernier chapitre consiste en une ouverture et propose différentes méthodes de modification de surface des fibres creuses et des capillaires élaborés dans les chapitres 3 et 4. / New ceramic materials have progressively emerged during the last century and continuously drew attention for diverse applications. This comes from the numerous and various properties they can exhibit. A great advantage of this type of materials is their mechanical, thermal and chemical stabilities, that makes ceramics of great interest for applications in harsh environments. This trend is especially perceptible in the field of membranes. In fact, despite their moderate cost, polymer membranes, which are mostly used, are very sensitive to the environment in which they are used and require to be replaced regularly. This justifies the search for alternatives and for more resistant materials like ceramics. Various shaping are possible to build a membrane, but among these, shapings in form of tubes have aroused particular enthusiasm because of their advantages in terms of surface/volume ratio and of lower mass transport resistance. Most of used and commercialized ceramics are based on oxide chemical compositions. This constitutes a drawback concerning the aging of the membranes and their stability at very high temperatures. Another type of ceramics, non oxide silicon based ceramics, exhibits very interesting properties which could eventually palliate these problems. In general, such materials are produced through the PDC route (Polymer Derived Ceramic route), especially because of the impossibility to proceed by more conventional methods for many of them. The principle of this bottom-up method is to synthesize preceramic polymers which can be converted into ceramics through an appropriate heat treatment. This enables a very good control of the chemical structure of the final ceramics and so a great versatility. Among these materials, the quaternary system Si-B-C-N has aroused big interest because of its extraordinary thermostructural properties coupled to chemical inertness. Thus, the present work has been focused on the preparation and application of this ceramic. Another advantage of the PDC route can be found in the possible shaping arising from the polymeric nature of the precursors. This method has been widely used for the production of thin ceramic fibers by using the melt-spinning process. The main objective of this thesis is the design of SiBCN ceramic hollow fibers and capillaries based on this shaping method. The aim is the preparation of very stable membrane supports at relatively low costs compared to conventional processes used to shape ceramic materials, often involving a sintering treatment at a very high temperature. These supports could be used in gas separation and water treatment applications. More precisely, chapter 1 presents a state of the art and allows to give the context and the motivations of this work. Chapter 2 discusses on the synthesis techniques and on the used methods. Chapter 3 is dedicated to the production of SiBCN ceramic hollow fibers by studying in details the precursors chemical structure used for this purpose before investigating its ceramic conversion and the evolution of the microstructure of the resulting ceramic. Chapter 4 is dealing with the production of SiBCN ceramic capillaries. The precursor used is characterized as well as the resulting ceramic. The last chapter gives some perspectives by proposing different methods of surface modifications of the hollow fibers and the capillaries presented in chapters 3 and 4.
|
4 |
Élaboration de carbure de silicium par Spark Plasma Sintering pour des applications en protection balistique / Development of silicon carbide by Spark Plasma Sintering for ballistic protectionDelobel, Florimond 28 November 2018 (has links)
Le développement de protections balistiques toujours plus légères et performantes reste un sujet de recherche très actif. Malgré de très hautes performances, la difficulté de mise en forme du SiC conduit généralement à l’utilisation d’aides au frittage en quantité importante, favorisant la formation de phases secondaires pouvant fragiliser le matériau. De plus, les hautes températures de mise en forme induisent la présence de phase α, conférant au matériau des propriétés mécaniques anisotropes et inférieures à celles de la phase cubique β.Dans ces travaux de thèse, l’objectif a été d’élaborer un matériau SiC cubique de très haute pureté, avec une densité de 100% et une stœchiométrie Si/C idéale afin d’optimiser les performances de cette céramique. Deux types de précurseurs ont été envisagés : une poudre commerciale et une poudre issue de la conversion d’un précurseur polymère précéramique.Dans un premier temps, une étude paramétrique de frittage par SPS a permis d’atteindre des densités de 95% pour les 2 précurseurs, tout en conservant la phase cubique seule. Ces résultats, bien qu’encourageants mais n’étant pas suffisants pour l’application visée, l’étude s’est tournée vers l’ajout d’aides au frittage. Des densités de 100% ont ainsi été obtenues sur des échantillons préparés à partir de poudre commerciale, même pour de très faibles teneurs en additif. Un second aspect de ces travaux a permis de mettre en évidence une dépendance de la température de transition β -> α du SiC vis-à-vis de la pression de frittage mais également vis-à-vis du type de précurseur, l’utilisation du précurseur polymère étant plus favorable à la stabilité de la structure cubique. Enfin des mesures de dureté ont été réalisées sur les meilleurs échantillons et ont permis de souligner le rôle prépondérant de la densité sur cette propriété. / The development of light and high performance ballistic protections is currently a sensitive subject of research. Despite promising mechanical characteristics, the complexity of SiC shaping generally leads to the use of high content of sintering aids, favouring secondary phases formation which could weaken the material. Nevertheless, high sintering temperatures induce the presence of the α form of SiC, conferring to the material anisotropical and lower mechanical properties than the one obtained with the cubic β phase.The goal of this PhD work is the development of high purity cubic SiC, with density close to 100% and perfect Si:C stoichiometry to optimize the performances of this ceramic. Two kinds of precursors were considered: a commercial powder and a powder from the conversion of preceramic polymer precursor.Firstly, the parametric study of SPS sintering allowed to reach densities of 95% for both precursors, while conserving only the cubic phase. These encouraging results being not sufficient, this study switched to the use of sintering aids. Densities close to 100% were thus reached on samples sintered with prepared mixtures from commercial powder, even for very low content of additive. The second subject of this thesis highlighted a dependence of the β -> α transition temperature of SiC as a function of sintering pressure, but also according to the kind of precursor. Indeed, the use of polymer precursor is favourable to cubic structure stability. Then, hardness measurements were performed on the most promising samples and allowed to highlight the major role of density on this property.
|
Page generated in 0.0492 seconds