Spelling suggestions: "subject:"burface plasmon resonance imaging (SPRi)"" "subject:"burface plasmon esonance imaging (SPRi)""
1 |
Développement d'un outil d'analyse d'interactions moléculaires basé sur la résonance plasmonique de surface (SPRi) / Development of molecular interactions analysis tool based on the Surface Plasmon Resonance imaging (SPRi)Pillet, Flavien 15 December 2010 (has links)
Ces dernières décennies, on a assisté à l’augmentation du nombre de technologies et de concepts permettant l’analyse des interactions intermoléculaires. Dans ce contexte, les puces à fluorescence restent les plus fréquemment utilisées. Cependant, cette technologie bien que très sensible et multiplexée, ne permet pas d’avoir accès aux paramètres cinétiques, indispensables au calcul des constantes d’affinité et la recherche de systèmes alternatifs s’impose. Dans cette optique, la résonance plasmonique de surface par imagerie (SPRi) est considérée comme une véritable option. Cette technologie se caractérise par l’absence de marquage et permet de suivre en temps réel d’infimes variations de masses consécutives à des interactions intermoléculaires sur la surface du prisme. L’obtention de constantes d’affinité est ainsi possible. En revanche, la SPRi présente un certain nombre de limites, principalement au niveau de la sensibilité et du multiplexage. Les objectifs de la thèse ont ainsi consisté à combler en partie ces différentes limites. La chimie de greffage basée sur l’utilisation d’oligonucléotides modifiés par un thiol a permis d’améliorer le multiplexage et de déposer plus de 1000 spots par cm² sur la surface d’or du prisme. Dans le même temps, la modification de la surface avec des colloïdes d’or et des dendrimères a permis pour des interactions ADN/ADN, d’atteindre une limite de détection de 2 nM (d’où un gain de 200%). En parallèle de ces travaux, diverses applications biologiques ont été effectuées. Une première étude a consisté à rechercher des ligands spécifiques des structures G-quadruplex des télomères. Une seconde étude s’est portée sur le complexe de partition bactérien. Par des études de criblage les bases impliquées dans l’interaction avec une protéine indispensable à la partition du plasmide F chez E.coli ont été identifiées. L’ensemble de ces travaux ont montré le fort potentiel de la SPRi et les applications potentielles qui en découlent sont nombreuses. / During the last decades a large number of technologies have been developed to analyze intermolecular interactions. In this context, the fluorescence biochips remain the most frequently used. Although this technology is very sensitive and multiplexed, it does not allow access to the kinetic parameters, essential to the calculation of the constants of affinity. Therefore, the research for alternative systems is essential. In this way, the Surface Plasmon Resonance imaging (SPRi) is considered as an opportunity. It is an optical detection process that can occur when a polarized light hits a prism covered by a thin metal layer. Under certain conditions free electrons at the surface of the biochip absorb incident light photons and convert them into surface plasmon waves. Perturbations at the surface of the biochip, such as an interaction between probes immobilized on the chip and targets, induce a modification of resonance conditions which can be measured. It is a label free technology which allows intermolecular interactions in real time and gives access to the kinetics parameters. However, SPRi is limited in sensitivity and multiplexing. The objectives of my PhD were to circumvent these various limits. Thus, we validated the immobilization of DNA probes on gold surface using thiol-modified oligonucleotide probes. Deposition carried out on non-modified gold surface, does not require electrical stimulation and expensive specific robotic devices. The thiol modification of the probes was shown to be very stable at room temperature, contrary to pyrrole and diazonium probes that need to be prepared just prior to their spotting. We demonstrate that thiol-modified oligonucleotide probes spotted on a gold surface of the SPRi-prisms are very robust and reproducible. We also demonstrated that this simple chemistry is compatible with high density arrays fabrication bearing more than 1000 spots using a classical spotter. Furthermore, the modification of the prism surface with gold colloids and dendrimers allowed for DNA/DNA interactions, to reach a detection limit of 2 nM. In parallel of this work, various biological applications were carried out and validate our previous developments. A first study was to screen G-quadruplex specific ligands to inhibit telomerase activity. We demonstrated that SPRi technology is particularly well adapted to the screening of interaction of small molecules with DNA probes and is sensitive enough to permit distinction between interactions with different DNA structures. The second study was on the bacterial partition complex. We study the DNA binding requirement involved in SopB-sopC specific interactions and analysed at the nucleotide level the bases involved in the binding efficiency and essential for the partition All this PhD work improved the SPRi technology and demonstrated its great potential in biological applications.
|
2 |
Exploration de méthodes alternatives pour la détection de bactéries dans le sang / Exploration of alternative methods for bacteria detection in bloodTemplier, Vincent 04 November 2016 (has links)
La présence de bactéries dans le sang, un milieu normalement stérile, peut avoir des conséquences graves voire fatales pour l’organisme atteint. Afin de diagnostiquer au plus tôt cette infection, appelée bactériémie, et ainsi administrer le traitement adéquat, il est nécessaire d’identifier les microorganismes isolés à partir du sang. Mais, la nature complexe de ce fluide biologique, associée à la faible charge bactérienne, parfois inférieure à 1 UFC par millilitre de sang ont des conséquences sur les méthodes pouvant être utilisées pour l’identification des bactéries. La plupart d’entre elles ont donc recours à une première étape, l’hémoculture, au cours de laquelle les microorganismes présents dans le prélèvement sanguin de volume important (20-30 mL) vont se multiplier. Leur croissance est facilitée par la dilution du sang dans des milieux de culture dédiés à cette étape particulière. C’est seulement ensuite que l’identification peut débuter. Elle nécessite encore entre 2 et 48 heures et parfois plus, selon les moyens à disposition et les microorganismes impliqués. Réduire considérablement le temps nécessaire à l’identification aurait pourtant des retombées bénéfiques à l’échelle du patient mais aussi plus globalement en réduisant les coûts associés à cette infection et en limitant la pression de sélection exercée par l’emploi d’antibiotiques à large spectre.Au cours de ce travail, l’évaluation d’une stratégie basée sur l’identification des bactéries lors de leur multiplication dans le milieu d’hémoculture est donc proposée. Elle repose sur l’observation en temps réel et sans marquage par Résonance Plasmonique de Surface par imagerie (SPRi) des interactions entre les bactéries et des ligands déposés à la surface d’un capteur. Dans un premier temps, des ligands alternatifs aux anticorps parmi lesquels figurent les aptamères, des protéines de l’immunité innée et la vancomycine sont testés. Suite à cette étude, les anticorps ont été retenus pour poursuivre ce travail. Leur emploi n’est cependant pas dénué de difficultés lorsqu’il s’agit de détecter spécifiquement Staphylococcus aureus, choisi comme l’un des modèles expérimentaux. En effet, la présence de protéine A chez cette bactérie est à l’origine d’interférences sur les immunoglobulines. Différentes stratégies pour s’affranchir de ces effets ont été évaluées, comme le clivage enzymatique des anticorps ou l’emploi d’anticorps de poule pour lesquels la protéine A n’a pas d’affinité. Ces essais aboutissent à des résultats encourageants en milieu de culture simple. L’ajout de sérum humain au milieu a soulevé de nouveaux problèmes pour la détection de cette bactérie. Les résultats montrent qu’en interagissant avec des constituants de l’échantillon sanguin, dont les anticorps, S. aureus devient indétectable par une biopuce à anticorps. Une discussion des moyens possibles pour lever cette inhibition est ensuite proposée. Des expériences de détection d’une autre bactérie, Salmonella enterica sérovar Enteritidis pour laquelle nous disposons d’un anticorps hautement affin et spécifique ont alors été entreprises afin de conclure sur l’employabilité du dispositif dans des conditions proches d’une hémoculture. Des interférences affectant différentiellement les anticorps selon leur point isoélectrique ont ainsi été mises en évidences et l’implication de l’anticoagulant (polyanéthole sulfonate de sodium, SPS) présent dans les milieux d’hémoculture a été démontrée. La résolution partielle de ce problème a finalement permis la détection de 1 UFC.mL-1 de sang dans 32 mL au total démontrant ainsi la possibilité de détecter spécifiquement une bactérie dans des conditions proches d’une hémoculture. / The presence of bacteria in the blood, a normally sterile environment, can cause dramatic consequences for an organism. In order to diagnose this infection, called bacteremia, the identification of the microorganism present in blood must be performed. Furthermore, proper diagnosis enables the administration of a suitable antibiotic therapy. Blood complexity as well as the low bacterial load, usually lower than 1 CFU.mL-1, make the diagnosis of this infection quite challenging. Indeed, most identification methods begin only after the blood culture turns positive due to their insufficient sensitivity. For this they require incubation of a large blood sample volume (20 – 30 mL) in specific culture media that allows bacterial growth above their detection limit. Therefore, its increases considerably the time of diagnosis, which usually takes between 2 and 48 hours and sometimes even more time after blood culture positivity depending on the method and the microorganism present in blood. A reduction of the time required for identification would have a positive impact for both the patient and the healthcare systems by reducing selective pressure on resistant bacteria and hospitalization costs by giving proper treatment faster.In this work, the evaluation of a new strategy based on the identification of bacteria during their multiplication in the blood culture is presented. This method is based on Surface Plasmon Resonance imaging (SPRi) which enables real time and label-free measurements of interactions occurring between bacteria and specific probes. Alternative ligands like aptamers, innate immune proteins and vancomycin have been tested. Following this study antibodies have been chosen as the major specific probes in this work. Nonetheless, the presence of the staphylococcal protein A leads to false-positive results in all immunoglobulin G (IgG). Enzymatic cleavage to remove the constant fragment of antibody where protein A interacts and the use of chicken antibodies (IgY) for which protein A has no affinity have been evaluated. Both methods allow to get rid of protein A interactions in pure culture media. But the presence of human serum in the media results in the total loss of signal. Our results show that interactions between blood components and staphylococcal proteins exposed at the bacterial surface, including the interactions between protein A and circulating antibodies, are responsible for this phenomenon. Solutions to alleviate this inhibition are discussed and tested. Detection experiments of another bacterial model, Salmonella enterica serovar Enteritidis in blood culture media are presented. The crucial role played by the anticoagulant Sodium Polyanethole Sulfonate in non-specific interactions on antibodies is demonstrated. These interactions leading to a total loss of specificity for some antibodies are influenced by the isoelectric point (pI) of the probes which interact with this anionic compound and then attract blood components. After the partial resolution of this issue, we show the feasibility of detecting less than one bacteria per blood milliliter in a total volume of 32 milliliters, conditions close to real blood culture.
|
3 |
Détection à large spectre de pathogènes bactériens à l'aide de peptides antimicrobiens / Wide-spectrum biosensors based on antimicrobial peptides for the detection of pathogenic bacteriaPardoux, Éric 25 October 2019 (has links)
L’analyse microbiologique pour confirmer l’absence de bactéries dans des échantillons biologiques normalement sains, comme le sang, est une routine dans de nombreux laboratoires. En effet, la présence de bactéries dans le sang, appelée bactériémie, peut avoir des conséquences très graves, voire mortelles pour le patient. Le protocole standard pour la détection des bactériémies repose jusqu’ici sur l’enrichissement des échantillons sanguins prélevés sur les patients lors de l’hémoculture, afin d’obtenir une population suffisante pour analyse. La lenteur de ce procédé retarde ainsi de parfois plusieurs jours le diagnostic et donc l’adaptation du traitement antibiotique administré au patient. Ces dernières décennies, des techniques comme l’identification par spectrométrie de masse ou les analyses moléculaires, ont permis de diminuer le délai requis pour identifier les pathogènes en cause. Dans ce contexte, l’emploi de biocapteurs est également une alternative. Ce travail propose d’inclure des sondes à large spectre dans un capteur optique par imagerie SPR (résonance de plasmons de surface). Ce système est déjà développé pour la reconnaissance spécifique de pathogènes au cours de leur croissance dans le sang. Les nouveaux ligands proposés et évalués sont les peptides antimicrobiens (PAM). Ces courts peptides cationiques et amphiphiles, présentent l’avantage d’un large spectre d’interaction couplé à une haute stabilité (chimique, thermique et séchage) comparativement aux anticorps employés jusqu’ici. Leur immobilisation sur des prismes SPRI permet d’évaluer simultanément l’affinité de plusieurs PAM à la même souche bactérienne. Les biocapteurs ainsi préparés ont permis de détecter des souches pathogènes d’Escherichia coli et Staphylococcus aureus en milieu de culture simple, comme en plasma et en sang dilué au milieu d’hémoculture. Le système obtenu permet la détection des pathogènes présents à une concentration initiale de l’ordre de 1 UFC.ml-1, en moins de 24 heures et quel que soit le milieu. Enfin, la mise en place d’analyses statistiques multidimensionnelles a abouti à une classification cohérente des espèces ciblées en milieu simple, comme en sang. Ces résultats montrent le potentiel de ce système pour parvenir à développer un biocapteur à large spectre capable à la fois de détecter mais aussi d’identifier par affinité croisée des pathogènes bactériens. / Microbiological analysis to confirm the absence of bacteria in normally sterile biological samples, such as blood, is routine in many laboratories. The presence of bacteria in blood, called bacteremia, can have very serious, and even fatal consequences for the patient. So far, the standard protocol for their detection has been based on the enrichment of blood samples collected from patients, thanks to blood culture, in order to obtain a sufficient population for analysis. These procedures are time consuming which sometimes lead to delays in diagnosis and subsequent adaptation of antibiotic treatments by several days. In recent decades, techniques such as mass spectrometry identification or molecular analyses have reduced the time required to identify the pathogens involved. In this context, the use of biosensors is another promising alternative. This work proposes to include wide spectrum probes in an optical sensor using SPR imaging (surface plasmon resonance). This system is already developed for the specific recognition of pathogens during their growth in the blood. The new ligands we propose to evaluate are antimicrobial peptides (AMP). These short, cationic and amphiphilic peptides have the advantage of having a broad spectrum of interaction with bacteria, coupled with high stability (chemical, thermal and drying), especially compared to the antibodies used so far in this technique. Their immobilization on SPRI prisms allows the simultaneous evaluation of the affinity of several AMP to the same bacterial strain. The biosensors based on AMP were able to detect pathogenic strains of Escherichia coli and Staphylococcus aureus in simple culture medium, such as plasma and diluted blood in blood culture medium. The system obtained allows the detection of pathogens present at an initial concentration of about 1 CFU.ml-1, in less than 24 hours and in all assayed media. Finally, the implementation of multidimensional statistical analyses has resulted in a consistent classification of targeted species, in simple culture medium, such as blood. These results show the potential of this system to develop a wide-spectrum biosensor capable of both detecting and cross-referencing bacterial pathogens.
|
Page generated in 0.0998 seconds