• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fractional Order and Inverse Problem Solutions for Plate Temperature Control

Jarrah, Bilal 27 May 2020 (has links)
Surface temperature control of a thin plate is investigated. Temperature is controlled on one side of the plate using the other side temperature measurements. This is a decades-old problem, reactivated more recently by the awareness that this is a fractional-order problem that justifies the investigation of the use of fractional order calculus. The approach is based on a transfer function obtained from the one-dimensional heat conduction equation solution that results in a fractional-order s-domain representation. Both the inverse problem approach and the fractional controller approach are studied here to control the surface temperature, the first one using inverse problem plus a Proportional only controller, and the second one using only the fractional controller. The direct problem defined as the ratio of the output to the input, while the inverse problem defined as the ratio of the input to the output. Both transfer functions are obtained, and the resulting fractional-order transfer functions were approximated using Taylor expansion and Zero-Pole expansion. The finite number of terms transfer functions were used to form an open-loop control scheme and a closed-loop control scheme. Simulation studies were done for both control schemes and experiments were carried out for closed-loop control schemes. For the fractional controller approach, the fractional controller was designed and used in a closed-loop scheme. Simulations were done for fractional-order-integral, fractional-order-derivative and fractional-integral-derivative controller designs. The experimental study focussed on the fractional-order-integral-derivative controller design. The Fractional-order controller results are compared to integer-order controller’s results. The advantages of using fractional order controllers were evaluated. Both Zero-Pole and Taylor expansions are used to approximate the plant transfer functions and both expansions results are compared. The results show that the use of fractional order controller performs better, in particular concerning the overshoot.
2

Récupération d'énergie dans les chaussées pour leur maintien hors gel / Harvesting energy in pavements to de-freeze its surface

Asfour, Sarah 09 December 2016 (has links)
Les opérations de maintenance des routes en conditions hivernales sur réseaux routiers constituent un enjeu important pour maintenir l’offre de mobilité en situation dégradée. Elles génèrent des coûts d’exploitation directs et indirects élevés, liés en particulier à l’utilisation intensive de fondants routiers. Par ailleurs, leur impact environnemental doit être pris en considération. Nous étudions ici une structure de chaussée non soumise à ce type d’astreinte, grâce à la présence d’une couche de liaison drainante dans laquelle circule un fluide chaud, permettant ainsi d’éviter le dépôt de neige ou la formation de glace en surface. Dans le cadre d’une démarche en faveur de l’emploi d’énergie renouvelable, un tel dispositif pourrait permettre de récupérer l’énergie thermique disponible en surface de chaussée en période chaude, de l’acheminer vers un lieu de stockage (ex : géothermie) et de l’utiliser en période froide. Nous étudions ici la fonction d’échangeur de chaleur entre le fluide et la chaussée, la fonction de stockage externe à la chaussée n’étant pas abordée hormis dans la revue bibliographique. La structure de chaussée considérée comporte trois couches d’enrobés. La couche de roulement et la couche de base sont constituées de matériaux classiquement utilisés dans les chaussées, à base de liants hydrocarbonés. Le matériau de la couche de liaison possède une porosité supérieure à 20%. La structure de chaussée est supposée avoir un dévers de l’ordre de 2%. Une chaussée expérimentale instrumentée a été mise en oeuvre pour recueillir des grandeurs thermo-physiques de la chaussée. Un modèle thermo-hydrique 2D est d2veloppé numériquement pour calculer la distribution de température dans le corps de chaussée lorsque l’on injecte un fluide à température d’entrée donnée, en haut de dévers. Les paramètres du modèle sont identifiés à partir des données expérimentales recueillies sous diverses sollicitations climatiques. On analyse dans un premier temps la sensibilité de la distribution de température en surface de chaussée aux différents paramètres du modèle (conductivité hydraulique, dévers, conductivités thermiques, chaleurs massiques), afin d’optimiser les procédures nécessaires au contrôle sous contraintes de températures positives en tout point. Dans une deuxième partie, des données expérimentales recueillies durant une période estivale d’un mois ont servi à valider le modèle thermique 1D. Une maquette de laboratoire a également permis d’identifier des paramètres en milieu saturé et non saturé. La dernière partie de thèse est consacrée au calcul des quantités énergétiques récupérables pendant la période estivale à l’aide des données de la réglEmentation thermique RT2012. Elles sont comparées aux quantités énergétiques de chauffage nécessaires pendant la période hivernale en s’appuyant sur des données de la RT2012 et des données de la Direction Interdépartementale des Routes Massif (DIR MC) ; l’objectif final étant de déterminer les performances énergétiques du système. / Winter maintenance operations for road networks are an important issue for maintaining the mobility in degraded situations, but generate high direct and indirect exploitation costs, particularly related to the intensive use of road de-icing and environmental impact. We study a road structure free of this penalty, thanks to a bonding drainage asphalt layer, circulated by a hot fluid, to prevent the deposition of snow or ice formation on the road surface. As part of an integrated vision of promoting the use of renewable energy, such device could be used to recuperate the thermal energy available in the road surface during the hot period, to transport it to a storage location (e.g. geothermal) and use it during cold period. We study here the heat exchanger function between the fluid and the road, the external storage function to the road being not addressed. The considered pavement structure has three asphalt layers.The bearing layer and the base layer are formed of conventional materials with hydrocarbon-based binders. The material of the bonding layer has a porosity of 20% and based on the use of a binder resistant to a prolonged circulation of the coolant. The road structure is assumed to have a slope of about 2 to 3%. An instrumented experimental road is implemented to collect data on the thermo-hydraulic response of the pavement structure. A thermo-hydraulic 2D model is designed to simulate the temperature field in the road structure when the fluid is injected at the upslope side of the road with a target temperature. This model is calibrated from experimental data collected on the experimental road subjected to meteorological solicitations. Initially, the sensibility of the distribution of the surface temperature of the road toward various model parameters (hydraulic conductivity, transversal slope, thermal conductivities, heat capacities) is analysed, in order to study the optimization of control procedures allowing to keep positive the road surface temperature at any point (e.g. determination of the minimum fluid injection temperature, under given meteorological data). In a second time, pavement thermal parameters is identified using control optimal method in order to validated unidimensionnel thermal model applied on July experimental data. In third time, hydraulic model is validated experimentaly using a laboratory mockup in saturated and unsaturated conditions. In a fourth time, thermo-hydraulic bidimensionnal model is validated numerically using mesured data of experimental pavement. Finally, harvest energy in summer period using thermal reglementation RT2012 data and heating energy in winter period using RT2012 and Massif Interdepartmental Road Direction (DIR MC) are calculated in order to evaluate system performance.

Page generated in 0.0939 seconds