• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automating the Moire Interferometry technique

Clayton, Peter Edward January 1994 (has links)
No description available.
2

Automatic 3D model creation with velocity-based surface deformations

Rangel Kuoppa, Risto Fermin 01 August 2007
The virtual worlds of Computer Graphics are populated by geometric objects, called models. Researchers have addressed the problem of synthesizing models automatically. Traditional modeling approaches often require a user to guide the synthesis process and to look after the geometry being synthesized, but user attention is expensive, and reducing user interaction is therefore desirable. I present a scheme for the automatic creation of geometry by deforming surfaces. My scheme includes a novel surface representation; it is an explicit representation consisting of points and edges, but it is not a traditional polygonal mesh. The novel surface representation is paired with a resampling policy to control the surface density and its evolution during deformation. The surface deforms with velocities assigned to its points through a set of deformation operators. Deformation operators avoid the manual computation and assignment of velocities, the operators allow a user to interactively assign velocities with minimal effort. Additionally, Petri nets are used to automatically deform a surface by mimicking a user assigning deformation operators. Furthermore, I present an algorithm to translate from the novel surface representations to a polygonal mesh. I demonstrate the utility of my model generation scheme with a gallery of models created automatically. The scheme's surface representation and resampling policy enables a surface to deform without requiring a user to control the deformation; self-intersections and hole creation are automatically prevented. The generated models show that my scheme is well suited to create organic-like models, whose surfaces have smooth transitions between surface features, but can also produce other kinds of models. My scheme allows a user to automatically generate varied instances of richly detailed models with minimal user interaction.
3

Automatic 3D model creation with velocity-based surface deformations

Rangel Kuoppa, Risto Fermin 01 August 2007 (has links)
The virtual worlds of Computer Graphics are populated by geometric objects, called models. Researchers have addressed the problem of synthesizing models automatically. Traditional modeling approaches often require a user to guide the synthesis process and to look after the geometry being synthesized, but user attention is expensive, and reducing user interaction is therefore desirable. I present a scheme for the automatic creation of geometry by deforming surfaces. My scheme includes a novel surface representation; it is an explicit representation consisting of points and edges, but it is not a traditional polygonal mesh. The novel surface representation is paired with a resampling policy to control the surface density and its evolution during deformation. The surface deforms with velocities assigned to its points through a set of deformation operators. Deformation operators avoid the manual computation and assignment of velocities, the operators allow a user to interactively assign velocities with minimal effort. Additionally, Petri nets are used to automatically deform a surface by mimicking a user assigning deformation operators. Furthermore, I present an algorithm to translate from the novel surface representations to a polygonal mesh. I demonstrate the utility of my model generation scheme with a gallery of models created automatically. The scheme's surface representation and resampling policy enables a surface to deform without requiring a user to control the deformation; self-intersections and hole creation are automatically prevented. The generated models show that my scheme is well suited to create organic-like models, whose surfaces have smooth transitions between surface features, but can also produce other kinds of models. My scheme allows a user to automatically generate varied instances of richly detailed models with minimal user interaction.
4

The visible consequences of rising convective streams in the Earth

Amiri Khanmakani, Hosein January 1993 (has links)
No description available.
5

WELD READ-THROUGH DEFECTS IN LASER TRANSMISSION WELDING

Cao, Xiaochao 02 July 2010 (has links)
In laser Transmission Welding (LTW), the laser beam passes through the transparent part and is dissipated as heat in the absorbent material through the use of laser-absorbing pigments such as carbon black (CB). This energy is then conducted further into both parts. Melting and subsequent solidification occur at the interface causing a weld to form between the two parts. Gluing or welding structures to the back of automotive Class-A panels often results in the appearance of undesirable surface deformations on the Class-A side. Through control of the laser welding and material parameters, it may be possible to use contour LTW as a means of joining structures to the back of absorbent Class-A panels without creating these unwanted surface defects. A series of lap welds was made using a range of CB levels, laser powers and polypropylene part thicknesses. A profilometer was used to measure the size and shape of the defects generated on the surface of the black part. Two types of defects were observed: ribs and sink marks. It was observed that lower powers combined with higher carbon black levels generally resulted in smaller defects. The type of defect depended on the boundary conditions between the two parts and the flow of polymer that had thermally expanded during welding (flash). If weld flash flowed into gaps between the two plates, rib defects were always observed. If flash flowed elsewhere and no gaps existed between the plates, sink marks occurred. Finite element modeling was used to qualitatively validate these observations. / Thesis (Master, Chemical Engineering) -- Queen's University, 2010-07-02 14:34:41.201
6

On Thin Shallow Elastic Shells Over Polygonal Bases

Walkinshaw, Douglas S. 10 1900 (has links)
<p> This thesis proposes to demonstrate, by means of numerieal examples, the applicability of the approximate solution for shallow, spherical, calotte shells enclosing polygonal bases for the purposes of practical design.</p> <p> The theoretical solution is based on a collocation procedure by means of which prescribed boundary conditions are satisfied at discrete boundary points and is derived from the general theory of MUSHTARI and VLASOV in which the transverse shear deformation of the shell is neglected in comparison with its transverse bending and extensional surface deformation.</p> / Thesis / Master of Engineering (MEngr)
7

Modélisation, reconstruction et animation de personnages virtuels 3D à partir de dessins manuels 2D

Triki-Bchir, Olfa 11 October 2005 (has links) (PDF)
La production de dessins animés 2D, qui suit actuellement un schéma mis en place dans les années 1920, fait intervenir un très nombre de compétences humaines et de métiers différents. Par opposition à ce mode de travail traditionnel, la production de films de synthèse 3D, en exploitant les technologies et outils les plus récents de modélisation et d'animation 3D, s'affranchit pour une bonne part de cette composante artisanale et vient concurrencer l'industrie du dessin animé tradtionnel en termes de délais et de coûts de fabrication.<br /><br />Les défis à relever par l'industrie du dessin animé 2D se formulent donc en termes de:<br /><br /> 1. Réutilisation des contenus selon le paradigme Create once, render many,<br /> 2. Facilité d'échange et de transmission des contenus, ce qui nécessite de disposer d'un unique format de représentation,<br /> 3. Production efficace et économique des contenus, requérant une animation automatisée par ordinateur. <br /><br />Dans ce contexte compétitif, ce travail de thèse, réalisé dans le cadre du projet industriel TOON financé par la société Quadraxis avec le support de l' Agence Nationale de Valorisation de la Recherche (Oséo-ANVAR), a pour objectif de contribuer au développement d'une plate-forme de reconstruction, déformation et animation de modèles 3D pour les dessins animés 2D.<br /><br />Un état de l'art des méthodes et outils contribuant à la reconstruction de modèles 3D et à leur animation est présenté et discuté au regard des contraintes spécifiques des règles de création des dessins animés 2D et de la chaîne de fabrication traditionnelle. Ayant identifié les verrous technologiques à lever, nos contributions ont porté sur :<br /><br /> * l'élaboration d'une méthode de reconstruction de personnages virtuels 3D à partir de dessins 2D,<br /> * la mise au point d'une procédure de reconstruction surfacique par NURBS dotée d'une capacité de déformation interactive 2D/3D,<br /> * la conception d'un module de modélisation 3D pour surfaces maillées, compatible avec le standard d'animation MPEG-4/AFX. <br /><br />Les développements réalisés, intégrés dans un prototype de la plate-forme TOON, montrent un gain en temps de 20% sur l'ensemble de la chaîne de production tout en garantissant une complète interopérabilité des applications via le standard MPEG-4.
8

Shape Modeling of Plant Leaves with Unstructured Meshes

Hong, Sung Min January 2005 (has links)
The plant leaf is one of the most challenging natural objects to be realistically depicted by computer graphics due to its complex morphological and optical characteristics. Although many studies have been done on plant modeling, previous research on leaf modeling required for close-up realistic plant images is very rare. In this thesis, a novel method for modeling of the leaf shape based on the leaf venation is presented. As the first step of the method, the leaf domain is defined by the enclosure of the leaf boundary. Second, the leaf venation is interactively modeled as a hierarchical skeleton based on the actual leaf image. Third, the leaf domain is triangulated with the skeleton as constraints. The skeleton is articulated with nodes on the skeleton. Fourth, the skeleton is interactively transformed to a specific shape. A user can manipulate the skeleton using two methods which are complementary to each other: one controls individual joints on the skeleton while the other controls the skeleton through an intermediate spline curve. Finally, the leaf blade shape is deformed to conform to the skeleton by interpolation. An interactive modeler was developed to help a user to model a leaf shape interactively and several leaves were modeled by the interactive modeler. The ray-traced rendering images demonstrate that the proposed method is effective in the leaf shape modeling.
9

Active Surface Deformation Technology for Management of Marine Biofouling

Shivapooja, Phanindhar January 2016 (has links)
<p>Biofouling, the accumulation of biomolecules, cells, organisms and their deposits on submerged and implanted surfaces, is a ubiquitous problem across various human endeavors including maritime operations, medicine, food industries and biotechnology. Since several decades, there have been substantial research efforts towards developing various types of antifouling and fouling release approaches to control bioaccumulation on man-made surfaces. In this work we hypothesized, investigated and developed dynamic change of the surface area and topology of elastomers as a general approach for biofouling management. Further, we combined dynamic surface deformation of elastomers with other existing antifouling and fouling-release approaches to develop multifunctional, pro-active biofouling control strategies. </p><p>This research work was focused on developing fundamental, new and environment-friendly approaches for biofouling management with emphasis on marine model systems and applications, but which also provided fundamental insights into the control of infectious biofilms on biomedical devices. We used different methods (mechanical stretching, electrical-actuation and pneumatic-actuation) to generate dynamic deformation of elastomer surfaces. Our initial studies showed that dynamic surface deformation methods are effective in detaching laboratory grown bacterial biofilms and barnacles. Further systematic studies revealed that a threshold critical surface strain is required to debond a biofilm from the surface, and this critical strain is dependent on the biofilm mechanical properties including adhesion energy, thickness and modulus. To test the dynamic surface deformation approach in natural environment, we conducted field studies (at Beaufort, NC) in natural seawater using pneumatic-actuation of silicone elastomer. The field studies also confirmed that a critical substrate strain is needed to detach natural biofilm accumulated in seawater. Additionally, the results from the field studies suggested that substrate modulus also affect the critical strain needed to debond biofilms. To sum up, both the laboratory and the field studies proved that dynamic surface deformation approach can effectively detach various biofilms and barnacles, and therefore offers a non-toxic and environmental friendly approach for biofouling management.</p><p>Deformable elastomer systems used in our studies are easy to fabricate and can be used as complementary approach for existing commercial strategies for biofouling control. To this end, we aimed towards developed proactive multifunctional surfaces and proposed two different approaches: (i) modification of elastomers with antifouling polymers to produce multifunctional, and (ii) incorporation of silicone-oil additives into the elastomer to enhance fouling-release performance.</p><p>In approach (i), we modified poly(vinylmethylsiloxane) elastomer surfaces with zwitterionic polymers using thiol-ene click chemistry and controlled free radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionalities. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. In approach (ii), we incorporated silicone-oil additives in deformable elastomer and studied synergistic effect of silicone-oils and surface strain on barnacle detachment. We hypothesized that incorporation of silicone-oil additive reduces the amount of surface strain needed to detach barnacles. Our experimental results supported the above hypothesis and suggested that surface-action of silicone-oils plays a major role in decreasing the strain needed to detach barnacles. Further, we also examined the effect of change in substrate modulus and showed that stiffer substrates require lower amount of strain to detach barnacles.</p><p>In summary, this study shows that (1) dynamic surface deformation can be used as an effective, environmental friendly approach for biofouling control (2) stretchable elastomer surfaces modified with anti-fouling polymers provides a pro-active, dual-mode approach for biofouling control, and (3) incorporation of silicone-oils additives into stretchable elastomers improves the fouling-release performance of dynamic surface deformation technology. Dynamic surface deformation by itself and as a supplementary approach can be utilized biofouling management in biomedical, industrial and marine applications.</p> / Dissertation
10

Shape Modeling of Plant Leaves with Unstructured Meshes

Hong, Sung Min January 2005 (has links)
The plant leaf is one of the most challenging natural objects to be realistically depicted by computer graphics due to its complex morphological and optical characteristics. Although many studies have been done on plant modeling, previous research on leaf modeling required for close-up realistic plant images is very rare. In this thesis, a novel method for modeling of the leaf shape based on the leaf venation is presented. As the first step of the method, the leaf domain is defined by the enclosure of the leaf boundary. Second, the leaf venation is interactively modeled as a hierarchical skeleton based on the actual leaf image. Third, the leaf domain is triangulated with the skeleton as constraints. The skeleton is articulated with nodes on the skeleton. Fourth, the skeleton is interactively transformed to a specific shape. A user can manipulate the skeleton using two methods which are complementary to each other: one controls individual joints on the skeleton while the other controls the skeleton through an intermediate spline curve. Finally, the leaf blade shape is deformed to conform to the skeleton by interpolation. An interactive modeler was developed to help a user to model a leaf shape interactively and several leaves were modeled by the interactive modeler. The ray-traced rendering images demonstrate that the proposed method is effective in the leaf shape modeling.

Page generated in 0.1276 seconds