• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electrochemical and infrared studies of the electrosorption of 4-methoxypyridine on crystallographic surfaces of gold.

2016 February 1900 (has links)
A firm knowledge about the interaction between the metal surface and adsorbed molecules is imperative for formulating procedures to synthesize nanoparticles (NPs) with predetermined shape and size. The ligand‐metal interaction during NP formation can be mimicked on an electrode surface by electrosorbing ligand molecules on a charged metal surface. Electrochemical methods can provide an ideal platform to study the adsorption behaviour of molecules at the solid‐liquid interface. In addition to classical electrochemical techniques, the combination of spectroscopy with electrochemical methods amplifies mechanistic insights about the surface adsorption processes. The adsorption behaviour of pyridine and one of its derivatives, 4‐dimethylamino pyridine (DMAP) have been well studied due to their potential application in nanoparticle synthesis. However, prior to this work, there has been very limited and conflicting literature available about the adsorption of of pyridine derivatives analogous to DMAP. Among the pyridine derivatives that were studied, some reports indicate that, other than DMAP, only 4‐methoxy pyridine (MOP) can stabilize gold nanoparticles. However, very little is known about the possible differences in the adsorption energy and general behaviour of MOP compared to DMAP. Resolving this knowledge gap is imperative to resolving the conflicting information about pyridine‐based stabilizers for metal nanoparticle applications. The adsorption behaviour of MOP on different crystallographic Au surfaces as a function of pH and surface potential has been investigated in this project. These studied were carried out using classical electrochemical methods including chronocoulometry and differential capacity, as well as modern spectroscopic techniques like Surface Enhanced Infrared Absorption Spectroscopy (SEIRAS). The thermodynamic parameters obtained from electrochemical data shows that adsorption features of MOP is similar to that of DMAP. However, there is a significant difference in the adsorption strength of MOP and DMAP at positive potentials. The SEIRAS data provides much more detailed information about the potential depended orientation of MOP on polycrystalline Au. Cumulative analysis of electrochemical and spectroscopic data provides strong evidence that MOP can stabilize Au(111) facets over wide pH ranges. Moreover, this work provides convincing evidence that the basic nature of substituted pyridine alters the metal to ligand adsorption strength.
2

Adsorption in Confined Aqueous Films

Gaddam, Prudhvidhar Reddy 24 July 2019 (has links)
This thesis describes direct measurements of equilibrium adsorption of ions in thin (< 100 nm) aqueous films. Adsorption in thin films is important because it is through adsorption that the stability of colloidal suspensions is frequently tuned. The vast majority of measurements of adsorption to date have been to a single interfaces, whereas the subject of this thesis is adsorption in a thin film between two interfaces. There are two isolated interfaces when particles in a suspension are far apart, but during the collision, a thin film forms between the particles, and the properties of the thin film determines the stability of the colloid. Thus, adsorption in the thin film determines the stability of the colloidal dispersion. There is a distinct gap in the scientific literature concerning adsorption in thin films mainly because there is no technique for measuring such adsorption. To fill this gap in knowledge, I first developed of a technique to directly measure adsorption in thin films, and then applied this technique to explore the behavior of co-ions near charged interfaces as a function of bulk solution composition and the thickness of the film. The adsorption behavior of fluorescein, a di-anion, to negatively charged silica interfaces was studied in dilute electrolytes. The focus was on the effect of the electrostatic screening length, or Debye-length. The separation was measured using interference microscopy and the adsorption of fluorescein was measured using fluorescence microscopy. The Debye-length was altered by variation of the background salt (NaCl) concentration in dilute (<1 M) solution. The surface excess of adsorption for fluorescein was shown to depend on both the Debye-length and the separation distance between two interfaces. Increasing the Debye-length from 4 nm to 21 nm increased the plateau surface excess at large separations, and decreasing the separation lead to a monotonically decreasing surface excess. The surface excess varied over a range that scaled with the Debye-length. The results were compared to solution of the Poisson-Boltzmann model and good agreement was found between the model and the experiment. The effect of background salt concentration on fluorescein adsorption was also studied in concentrated electrolytes (2.5 – 10 M) for various monovalent salts (LiCl, NaCl and CsCl). The results showed that the fitted electrostatic screening length showed an opposite trend to predictions from Poisson-Boltzmann, with the screening-length increasing with increasing salt concentration. That is, the Debye-length prediction was quantitatively incorrect and predicts the incorrect trend. For example, in 10 M LiCl where the Debye-length is 0.1 nm, and therefore colloidal chemists would traditionally predict that double-layer forces are negligible, my results show that the actual decay length is about 10 nm, which is about the same as in 10-3 M LiCl solution. The rate of increase of screening-length as a function of concentration was also an ion specific effect. In addition, the results show that there is an inversion of the surface charge in concentrated salt solution. The original device on which all the above measurements were made had two limitations: (1) the maximum film thickness was 50 nm and (2) the film was asymmetric, which hampered calculation of the surface excess and increased the number of degrees of freedom in modeling of the adsorption. In the last part of my thesis, I describe development of a symmetric sample which (1) enables measurement of films up to 1 µm, (2) simplifies modeling of the optics by eliminating optical interference of the fluorescence excitation, and reduces the number of parameters when comparing to models. / Doctor of Philosophy / This thesis aims to understand the behavior of electrically charged molecules and atoms in thin nanometer scale (< 100 nm) liquid films subject to confinement between two charged interfaces. This situation frequently arises in colloidal suspensions, which consist of tiny sub-microscopic particles (colloid), droplets and large molecules dispersed in a second continuous medium. The stability of these suspensions, i.e. whether the colloidal materials agglomerate and sediment out of the suspension or remain stably suspended, depends on the surface forces between their interfaces during collision events, which frequently arise due to Brownian motion. As the fluid between particles thins as they approach each other during these collision events, the behavior of the dissolved molecules can be significantly different than when they are far apart due to the presence two interacting interfaces. Typically the dissolved molecules are used to tune the surface forces and understanding their behavior in confinement is relevant to a colloid scientist whose aim is to tune the behavior of the suspension. In the first part of this work, a technique is developed that serves as the static analogue to colloidal objects colliding with each other. The equilibrium behavior of a negatively charged fluorescent ion is measured as a function of film thickness and background salt concentration between two negatively charged interfaces. The Poisson-Boltzmann model predicts that with decreased salt concentration, there is a greater magnitude of depletion of the fluorescent ion at large separations and the characteristic length over which there is a change in the magnitude of depletion increases. Good agreement is found between the model and the experiment validating the technique developed and providing the first direct observation of molecular behavior subject to confinement as a function of solution composition. This effect of background salt type and concentration was tested for concentrated electrolytes as well. The experimental results showed an opposite trend to predictions from the Poisson-Boltzmann model. The fluorescent ion was now adsorbed to negatively charged interfaces indicating that the negatively charged interfaces were now positively charged. The magnitude of adsorption at large separations and characteristic length over which the magnitude of adsorption changes was a function of the salt concentration and the ion type. Finally, improvements were made to the original device to overcome limitations with the original device. The limitations were that (1) the maximum film thickness was 50 nm and (2) the interfaces were asymmetric which complicated theoretical calculations of the equilibrium behavior of the ions. In the last part of my thesis, I develop a sample which (1) enables measurements of films up to 1 µm and (2) simplifies the optical modeling necessary in the first two sections of this thesis.
3

Estabilização das nanopartículas de SnO2 - ZnO dopados: um estudo termodinâmico / Stabilization of SnO2 - ZnO nanoparticles: a thermodynamic study.

Rosario, Deise Cristina Carvalho do 28 November 2016 (has links)
A inserção de aditivos em sistemas nanométricos tem como objetivo usual a estabilização destes materiais. A distribuição do aditivo nas interfaces é fundamental para o controle do balanço energético e das características da nanopartícula. Neste trabalho, foi estudado o efeito termodinâmico da inserção de Zn2+ e Sn4+ nos pós de SnO2 e ZnO, respectivamente, sintetizados pelo método dos precursores poliméricos baseado em Pechini. A quantificação do excesso de interface pela lixiviação ácida e o estudo da evolução do tamanho das partículas e de suas áreas de superfície e de contorno de grão, permitiram calcular a distribuição do aditivo no sistema e avaliar sua influência em cada região onde este estava localizado. À 500°C, para baixas concentrações, há a solubilização dos aditivos na rede, promovendo o crescimento das nanopartículas. Para as concentrações acima de 0,05 mol%, o aditivo tende a se concentrar no contorno de grão e na superfície, promovendo uma estabilidade a estas regiões, possibilitando nanopartícula menores no que as dos pós sem aditivo e com baixa aglomeração. O ensaio cinético reforçou a ideia da correlação entre estabilidade e distribuição do aditivo nas interfaces, além de mostrar um efeito de aceleração do processo de estabilização com o aumento da concentração de aditivos. Também foi possível calcular o calor de segregação para o contorno de grão (?HsegrCG= 48,8 J.mol-1) e superfície (?HSsegr= 37,0 J.mol-1), o que permitiu determinar as energias das interfaces, mostrando que a estabilização provocada pela inserção de aditivos esta diretamente associada a diminuição destas energias. / The inclusion of additives in nanometric systems has the usual purpose of stabilizing these materials. This distribution in the interfaces is critical to the control of energy balance and nanoparticle characteristics. In this work, we studied the thermodynamic effect of the inclusion of Zn2+ and Sn4+ in the powders of SnO2 and ZnO, respectively, synthesized by the polymeric precursor method based on Pechini. The quantification of interface excess by acid leaching and the study of the evolution of particle size, surface areas and grain boundary, allowed to calculate the distribution of the additive in the system and evaluate its influence in each region where it was located. At 500 °C, for low concentrations, there is a solubilization of additives in the bulk, promoting growth of the nanoparticles. For concentrations above 0.05 mol%, the additive tends to concentrate on grain boundary and surface, promoting the stability of these regions. This stability enables smaller nanoparticles and with low agglomeration. The kinetic assay strengthened the idea of correlation between stability and distribution of the additive in the interfaces, besides showing an accelerating effect of the stabilization process by increasing the concentration of additives. It was also possible to calculate the heat of segregation of the grain boundary (?HCGsegr = 48.8 J.mol-1) and surface (?HSsegr = 37.0 J.mol-1), which allowed to determine the energies of the interfaces. This showed that the stabilization brought about by the inclusion of additives is directly associated with the reduction of these energies.
4

Estabilização das nanopartículas de SnO2 - ZnO dopados: um estudo termodinâmico / Stabilization of SnO2 - ZnO nanoparticles: a thermodynamic study.

Deise Cristina Carvalho do Rosario 28 November 2016 (has links)
A inserção de aditivos em sistemas nanométricos tem como objetivo usual a estabilização destes materiais. A distribuição do aditivo nas interfaces é fundamental para o controle do balanço energético e das características da nanopartícula. Neste trabalho, foi estudado o efeito termodinâmico da inserção de Zn2+ e Sn4+ nos pós de SnO2 e ZnO, respectivamente, sintetizados pelo método dos precursores poliméricos baseado em Pechini. A quantificação do excesso de interface pela lixiviação ácida e o estudo da evolução do tamanho das partículas e de suas áreas de superfície e de contorno de grão, permitiram calcular a distribuição do aditivo no sistema e avaliar sua influência em cada região onde este estava localizado. À 500°C, para baixas concentrações, há a solubilização dos aditivos na rede, promovendo o crescimento das nanopartículas. Para as concentrações acima de 0,05 mol%, o aditivo tende a se concentrar no contorno de grão e na superfície, promovendo uma estabilidade a estas regiões, possibilitando nanopartícula menores no que as dos pós sem aditivo e com baixa aglomeração. O ensaio cinético reforçou a ideia da correlação entre estabilidade e distribuição do aditivo nas interfaces, além de mostrar um efeito de aceleração do processo de estabilização com o aumento da concentração de aditivos. Também foi possível calcular o calor de segregação para o contorno de grão (?HsegrCG= 48,8 J.mol-1) e superfície (?HSsegr= 37,0 J.mol-1), o que permitiu determinar as energias das interfaces, mostrando que a estabilização provocada pela inserção de aditivos esta diretamente associada a diminuição destas energias. / The inclusion of additives in nanometric systems has the usual purpose of stabilizing these materials. This distribution in the interfaces is critical to the control of energy balance and nanoparticle characteristics. In this work, we studied the thermodynamic effect of the inclusion of Zn2+ and Sn4+ in the powders of SnO2 and ZnO, respectively, synthesized by the polymeric precursor method based on Pechini. The quantification of interface excess by acid leaching and the study of the evolution of particle size, surface areas and grain boundary, allowed to calculate the distribution of the additive in the system and evaluate its influence in each region where it was located. At 500 °C, for low concentrations, there is a solubilization of additives in the bulk, promoting growth of the nanoparticles. For concentrations above 0.05 mol%, the additive tends to concentrate on grain boundary and surface, promoting the stability of these regions. This stability enables smaller nanoparticles and with low agglomeration. The kinetic assay strengthened the idea of correlation between stability and distribution of the additive in the interfaces, besides showing an accelerating effect of the stabilization process by increasing the concentration of additives. It was also possible to calculate the heat of segregation of the grain boundary (?HCGsegr = 48.8 J.mol-1) and surface (?HSsegr = 37.0 J.mol-1), which allowed to determine the energies of the interfaces. This showed that the stabilization brought about by the inclusion of additives is directly associated with the reduction of these energies.

Page generated in 0.0575 seconds