Spelling suggestions: "subject:"debondlength"" "subject:"derivedlength""
1 |
Adsorption in Confined Aqueous FilmsGaddam, Prudhvidhar Reddy 24 July 2019 (has links)
This thesis describes direct measurements of equilibrium adsorption of ions in thin (< 100 nm) aqueous films. Adsorption in thin films is important because it is through adsorption that the stability of colloidal suspensions is frequently tuned. The vast majority of measurements of adsorption to date have been to a single interfaces, whereas the subject of this thesis is adsorption in a thin film between two interfaces. There are two isolated interfaces when particles in a suspension are far apart, but during the collision, a thin film forms between the particles, and the properties of the thin film determines the stability of the colloid. Thus, adsorption in the thin film determines the stability of the colloidal dispersion. There is a distinct gap in the scientific literature concerning adsorption in thin films mainly because there is no technique for measuring such adsorption. To fill this gap in knowledge, I first developed of a technique to directly measure adsorption in thin films, and then applied this technique to explore the behavior of co-ions near charged interfaces as a function of bulk solution composition and the thickness of the film.
The adsorption behavior of fluorescein, a di-anion, to negatively charged silica interfaces was studied in dilute electrolytes. The focus was on the effect of the electrostatic screening length, or Debye-length. The separation was measured using interference microscopy and the adsorption of fluorescein was measured using fluorescence microscopy. The Debye-length was altered by variation of the background salt (NaCl) concentration in dilute (<1 M) solution. The surface excess of adsorption for fluorescein was shown to depend on both the Debye-length and the separation distance between two interfaces. Increasing the Debye-length from 4 nm to 21 nm increased the plateau surface excess at large separations, and decreasing the separation lead to a monotonically decreasing surface excess. The surface excess varied over a range that scaled with the Debye-length. The results were compared to solution of the Poisson-Boltzmann model and good agreement was found between the model and the experiment.
The effect of background salt concentration on fluorescein adsorption was also studied in concentrated electrolytes (2.5 – 10 M) for various monovalent salts (LiCl, NaCl and CsCl). The results showed that the fitted electrostatic screening length showed an opposite trend to predictions from Poisson-Boltzmann, with the screening-length increasing with increasing salt concentration. That is, the Debye-length prediction was quantitatively incorrect and predicts the incorrect trend. For example, in 10 M LiCl where the Debye-length is 0.1 nm, and therefore colloidal chemists would traditionally predict that double-layer forces are negligible, my results show that the actual decay length is about 10 nm, which is about the same as in 10-3 M LiCl solution. The rate of increase of screening-length as a function of concentration was also an ion specific effect. In addition, the results show that there is an inversion of the surface charge in concentrated salt solution.
The original device on which all the above measurements were made had two limitations: (1) the maximum film thickness was 50 nm and (2) the film was asymmetric, which hampered calculation of the surface excess and increased the number of degrees of freedom in modeling of the adsorption. In the last part of my thesis, I describe development of a symmetric sample which (1) enables measurement of films up to 1 µm, (2) simplifies modeling of the optics by eliminating optical interference of the fluorescence excitation, and reduces the number of parameters when comparing to models. / Doctor of Philosophy / This thesis aims to understand the behavior of electrically charged molecules and atoms in thin nanometer scale (< 100 nm) liquid films subject to confinement between two charged interfaces. This situation frequently arises in colloidal suspensions, which consist of tiny sub-microscopic particles (colloid), droplets and large molecules dispersed in a second continuous medium. The stability of these suspensions, i.e. whether the colloidal materials agglomerate and sediment out of the suspension or remain stably suspended, depends on the surface forces between their interfaces during collision events, which frequently arise due to Brownian motion. As the fluid between particles thins as they approach each other during these collision events, the behavior of the dissolved molecules can be significantly different than when they are far apart due to the presence two interacting interfaces. Typically the dissolved molecules are used to tune the surface forces and understanding their behavior in confinement is relevant to a colloid scientist whose aim is to tune the behavior of the suspension. In the first part of this work, a technique is developed that serves as the static analogue to colloidal objects colliding with each other. The equilibrium behavior of a negatively charged fluorescent ion is measured as a function of film thickness and background salt concentration between two negatively charged interfaces. The Poisson-Boltzmann model predicts that with decreased salt concentration, there is a greater magnitude of depletion of the fluorescent ion at large separations and the characteristic length over which there is a change in the magnitude of depletion increases. Good agreement is found between the model and the experiment validating the technique developed and providing the first direct observation of molecular behavior subject to confinement as a function of solution composition. This effect of background salt type and concentration was tested for concentrated electrolytes as well. The experimental results showed an opposite trend to predictions from the Poisson-Boltzmann model. The fluorescent ion was now adsorbed to negatively charged interfaces indicating that the negatively charged interfaces were now positively charged. The magnitude of adsorption at large separations and characteristic length over which the magnitude of adsorption changes was a function of the salt concentration and the ion type. Finally, improvements were made to the original device to overcome limitations with the original device. The limitations were that (1) the maximum film thickness was 50 nm and (2) the interfaces were asymmetric which complicated theoretical calculations of the equilibrium behavior of the ions. In the last part of my thesis, I develop a sample which (1) enables measurements of films up to 1 µm and (2) simplifies the optical modeling necessary in the first two sections of this thesis.
|
2 |
SOFT POLYELECTROLYTE HYDROGEL AS VERSATILE MATERIAL IN DIFFERENT APPLICATIONWANG, YUJEN 13 September 2016 (has links)
No description available.
|
3 |
The Non-uniform Argon Dc Glow Discharge System Parameters Measured With Fast Three Couples Of Double ProbeAkbar, Demiral Salih 01 March 2006 (has links) (PDF)
The non-uniform dc glow discharge plasma system is studied by using isolated computer controlled three couples of double probe system (TCDP) in argon gas, simultaneously. TCDP system has been developed to use for magnetized, unmagnetized, and for low oscillating plasma systems by using low pass filter with optically isolated circuitry to minimize the measurement errors with higher resolution and accuracy. Difference in the shapes and diameters of the discharge tube from region to region leads to change in the positive column
glow discharge properties. This is because the positive column
inhomogeneities, rising from the increase in the electron densities at the small tube radius region than the large one. Therefore, the axial electric field and the electron temperature have been diverted from their normal behavior in the positive column. However, at the large radius regions, the axial electric field seams to stay approximately constant at higher discharge currents.
On the other hand, In this work the radial dependence of the
electron temperature, density, floating potential, and the
normalized probe radius (& / #958 / =rp& / #955 / D) has been
investigated. Since, the probe radius is smaller than Debye length, the orbital motion limited (OML) theory has been used. As a result, the electron temperature (at the center) decreased and density increased with decreasing tube radius, and they have maximum values at the first probe (near the cathode). The electron density ne was observed to decrease and electron temperature Te to increase with increasing the discharge current. The floating potential has less negative value with decreasing tube radius except at the higher currents. Finally, it has been found that the & / #958 / is proportional with electron density, but it remains constant depending on the value of Te and ne.
|
4 |
Modèles cinétiques, de Kuramoto à Vlasov : bifurcations et analyse expérimentale d'un piège magnéto-optique / Kinetic models, from Kuramoto to Vlasov : bifurcations and experimental analysis of a magneto-optical trapMétivier, David 22 September 2017 (has links)
Les systèmes en interaction à longue portée sont connus pour avoir des propriétés statistiques et dynamiques particulières. Pour décrire leur évolution dynamique, on utilise des équations cinétiques décrivant leur densité dans l'espace des phases. Ce manuscrit est divisé en deux parties indépendantes. La première traite de notre collaboration avec une équipe expérimentale sur un Piège Magnéto-Optique. Ce dispositif à grand nombre d'atomes présente des interactions coulombiennes effectives provenant de la rediffusion des photons. Nous avons proposé des tests expérimentaux pour mettre en évidence l'analogue d'une longueur de Debye, et son influence sur la réponse du système. Les expériences réalisées ne permettent pour l'instant pas de conclure de façon définitive. Dans la deuxième partie, nous avons analysé les modèles cinétiques de Vlasov et de Kuramoto. Pour étudier leur dynamique de dimension infinie, nous avons examiné les bifurcations autour des états stationnaires instables, l'objectif étant d'obtenir des équations réduites décrivant la dynamique de ces états. Nous avons réalisé des développements en variété instable sur cinq systèmes différents. Ces réductions sont parsemées de singularités, mais prédisent correctement la nature de la bifurcation, que nous avons testée numériquement. Nous avons conjecturé une réduction exacte (obtenue via la forme normale Triple Zero) autour des états inhomogènes de l'équation de Vlasov. Ces résultats génériques pourraient être pertinents dans un contexte astrophysique. Les autres résultats s'appliquent aux phénomènes de synchronisation du modèle de Kuramoto pour les oscillateurs avec inertie et/ou interactions retardées. / Long-range interacting systems are known to display particular statistical and dynamical properties.To describe their dynamical evolution, we can use kinetic equations describing their density in the phase space. This PhD thesis is divided into two distinct parts. The first part concerns our collaboration with an experimental team on a Magneto-Optical Trap. The physics of this widely-used device, operating with a large number of atoms, is supposed to display effective Coulomb interactions coming from photon rescattering. We have proposed experimental tests to highlight the analog of a Debye length, and its influence on the system response. The experimental realizations do not allow yet a definitive conclusion. In the second part, we analyzed the Vlasov and Kuramoto kinetic models. To study their infinite dimensional dynamics, we looked at bifurcations around unstable steady states. The goal was to obtain reduced equations describing the dynamical evolution. We performed unstable manifold expansions on five different kinetic systems. These reductions are in general not exact and plagued by singularities, yet they predict correctly the nature and scaling of the bifurcation, which we tested numerically. We conjectured an exact dimensional reduction (obtained using the Triple Zero normal form) around the inhomogeneous states of the Vlasov equation. These results are expected to be very generic and could be relevant in an astrophysical context. Other results apply to synchronization phenomena through the Kuramoto model for oscillators with inertia and/or delayed interactions.
|
Page generated in 0.0429 seconds