• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

3D scanning of transparent objects

Eren, Gönen 22 October 2010 (has links) (PDF)
Many practical tasks in industry, such as automatic inspection or robot vision, often require scanning of three-dimensional shapes with non-contact techniques. However, transparent objects, such as those made of glass, still pose difficulties for classical scanning techniques. The reconstruction of surface geometry for transparent objects is complicated by the fact that light is transmitted through, refracted and in some cases reflected by the surface. Current approaches can only deal relatively well with sub-classes of objects. The algorithms are still very specific and not generally applicable. Furthermore, many techniques require considerable acquisition effort and careful calibration. This thesis proposes a new method of determining the surface shape of transparent objects. The method is based on local surface heating and thermal imaging. First, the surface of the object is heated with a laser source. A thermal image is acquired, and pixel coordinates of the heated point are calculated. Then, the 3D coordinates of the surface are computed using triangulation and the initial calibration of the system. The process is repeated by moving the transparent object to recover its surface shape. This method is called Scanning From Heating. Considering the laser beam as a point heating source and the surface of the object locally flat at the impact zone, the Scanning From Heating method is extended to obtain the surface normals of the object, in addition to the 3D world coordinates. A scanner prototype based on Scanning From Heating method has been developed during the thesis.
2

Interactive Depth-Aware Effects for Stereo Image Editing

Abbott, Joshua E. 24 June 2013 (has links) (PDF)
This thesis introduces methods for adding user-guided depth-aware effects to images captured with a consumer-grade stereo camera with minimal user interaction. In particular, we present methods for highlighted depth-of-field, haze, depth-of-field, and image relighting. Unlike many prior methods for adding such effects, we do not assume prior scene models or require extensive user guidance to create such models, nor do we assume multiple input images. We also do not require specialized camera rigs or other equipment such as light-field camera arrays, active lighting, etc. Instead, we use only an easily portable and affordable consumer-grade stereo camera. The depth is calculated from a stereo image pair using an extended version of PatchMatch Stereo designed to compute not only image disparities but also normals for visible surfaces. We also introduce a pipeline for rendering multiple effects in the order they would occur physically. Each can be added, removed, or adjusted in the pipeline without having to reapply subsequent effects. Individually or in combination, these effects can be used to enhance the sense of depth or structure in images and provide increased artistic control. Our interface also allows editing the stereo pair together in a fashion that preserves stereo consistency, or the effects can be applied to a single image only, thus leveraging the advantages of stereo acquisition even to produce a single photograph.
3

3D scanning of transparent objects / Numérisation 3D d'objets transparents

Eren, Gönen 22 October 2010 (has links)
Beaucoup de tâches pratiques dans l'industrie, tels que l'inspection automatique ou la vision robotique, nécessitent souvent de numérisation de formes en trois dimensions (3D) avec des techniques non-contact. Toutefois, les objets transparents, tels que ceux en verre, posent encore des difficultés pour les techniques classiques de numérisation. La reconstruction de la géométrie de surface pour les objets transparents est compliquée par le fait que la lumière est transmise à travers, réfracté et dans certains cas, réfléchie par la surface. Les approches actuelles ne peut traiter que les sous-classes d'objets. Les algorithmes sont encore très spécifiques et ne sont généralement pas applicables. En outre, de nombreuses techniques exigent un effort considérable d'acquisition et de calibration. Cette thèse propose une nouvelle méthode de détermination de la forme de la surface des objets transparents. La méthode est basée sur le chauffage locale de la surface et sur l'imagerie thermique. Tout d'abord, la surface de l'objet est chauffé avec une source laser. Une image thermique est acquis, et les coordonnées en pixels du point d'échauffement sont calculés. Ensuite, les coordonnées 3D de la surface sont déterminées en utilisant triangulation et l'étalonnage initial du système. Le processus est répété en déplaçant l'objet transparent pour reprendre sa forme de surface complète. Cette méthode est appelée "Scanning From Heating". Considérant le faisceau laser comme une source de chauffage point et la surface de l'objet localement plane à la zone d'impact, la méthode est utilisée pour obtenir les normales de la surface de l'objet, en plus des coordonnées 3D. Un prototype base sur cette méthode a été développé pendant la thèse. / Many practical tasks in industry, such as automatic inspection or robot vision, often require scanning of three-dimensional shapes with non-contact techniques. However, transparent objects, such as those made of glass, still pose difficulties for classical scanning techniques. The reconstruction of surface geometry for transparent objects is complicated by the fact that light is transmitted through, refracted and in some cases reflected by the surface. Current approaches can only deal relatively well with sub-classes of objects. The algorithms are still very specific and not generally applicable. Furthermore, many techniques require considerable acquisition effort and careful calibration. This thesis proposes a new method of determining the surface shape of transparent objects. The method is based on local surface heating and thermal imaging. First, the surface of the object is heated with a laser source. A thermal image is acquired, and pixel coordinates of the heated point are calculated. Then, the 3D coordinates of the surface are computed using triangulation and the initial calibration of the system. The process is repeated by moving the transparent object to recover its surface shape. This method is called Scanning From Heating. Considering the laser beam as a point heating source and the surface of the object locally flat at the impact zone, the Scanning From Heating method is extended to obtain the surface normals of the object, in addition to the 3D world coordinates. A scanner prototype based on Scanning From Heating method has been developed during the thesis.

Page generated in 0.0361 seconds