• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 2
  • Tagged with
  • 12
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Downstream Patterns and Catchment Controls on Suspended Sediment Transport in a High Arctic River

Favaro, ELENA 26 September 2013 (has links)
A study of downstream suspended sediment transport dynamics in the West River at Cape Bounty, Melville Island, Nunavut, was undertaken in 2012. The first component of the research quantified the sediment mobilized in the West River during the 2012 season. A nival bed-contact survey was undertaken to identify areas of the river in which stream flow was isolated from the bed, and was combined with a reach-based sediment budget approach to assess sediment entrainment and downstream movement. This analysis revealed the propensity of the West River to store suspended sediment through much of the season. Permafrost disturbances in 2007 inundated the West River with fine sediments, the majority of which are progressing from the headwaters as a sediment slug that is subject to substantial downstream storage. Diurnal and event hysteresis analysis from 2004-2012 demonstrate the change in sediment delivery inter-annually, transitioning from a system characterized by clockwise hysteresis prior to the 2007 disturbances, to counter-clockwise hysteresis post 2007. The latter is reflective of the important contribution of the headwater sediment slug from disturbance to downstream sediment transport and common net sediment storage in the lower reaches of the river. The second project studied the delivery of suspended sediment following late season major rainfall events (MRE) and the control antecedent catchment conditions prior to rainfall exert on the magnitude of stream runoff and suspended sediment transport. Two MREs on July 9 and July 23, totalling 35.4 and 10.6 mm, respectively, resulted in exceptionally low discharge response and sediment mobilization. Analysis of synoptic level pressure patterns and catchment soil moisture revealed low volumetric water content preceding both MREs, a result of sustained exceptional early summer warmth under stable regional high pressure. Compared to similar MREs in 2007-2009, the soil in 2012 did not become saturated, and substantial runoff did not occur. These studies contribute to an understanding of the processes of sediment transport in response to disturbances, rainfall, and antecedent catchment conditions, all of which are becoming important components of the Arctic fluvial systems but have had limited study due to the emphasis on snow melt processes and hydrological fluxes. / Thesis (Master, Geography) -- Queen's University, 2013-09-25 11:36:58.882
2

Sediment transport and bedform dynamics in rip currents

Thorpe, Antony January 2016 (has links)
Simultaneous in-situ measurements of waves, currents, water depth, suspended sediment concentrations and bed profiles were made in a rip channel on Perranporth Beach, Cornwall, UK. Perranporth is a high energy beach (annual offshore Hs = 1.6 m) which is macro-tidal (mean spring range = 6.3 m) and the grain size is medium sand (D50 = 0.28 – 0.34 mm). It can be classified as a low tide bar – rip beach and exhibits a relatively flat inter-tidal zone with pronounced rhythmic low tide bar - rip morphology. Data were collected over two field campaigns, totalling 14 tidal cycles and including 27 occurrences of rip currents, in a range of offshore wave heights (Hs = 0.5 – 3 m). The in-situ measurements were supplemented with morphological beach surveys. Sediment samples were taken for grain size analysis. The rip current was found to be tidally modulated. The strongest rip flow (0.7 m/s) occurred at mid to low tide, when waves were breaking on the adjacent bar. Rip flow persisted when the bar had dried out at the lowest tidal elevations. The rip was observed to pulse at a very low frequency (VLF) with a period of 15 - 20 minutes, which was shown to be influenced by wave breaking on the adjacent bar. The rip was completely in-active at high tide. Bedforms were ubiquitous in the rip channel and occurred at all stages of the tide. Visual observations found bedforms to be orientated shore parallel. When the rip was active, mean bedform length and height was 1.45 m and 0.06 m respectively. The size and position of the bedforms in the nearshore suggested that they were best classified as megaripples. When the rip was not active, the mean bedform length and height was 1.09 m and 0.06 m respectively. In rip conditions, with typical mean offshore flow rates of > 0.3 m/s, the bedforms migrated in an offshore direction at a mean rate of 0.16 cm/min and a maximum rate of 4.6 cm/min. The associated mean bedform sediment transport rate was 0.0020 kg/m/s, with a maximum rate of 0.054 kg/m/s. In the rip, migration rates were correlated with offshore directed mean flow strength. In non-rip conditions, bedform migration was onshore directed with a mean rate of 0.09 cm/min and a maximum rate of = 2.2 cm/min. The associated mean bedform transport rate was 0.0015 kg/m/s, with a maximum rate of = 0.041 kg/m/s. The onshore bedform transport was correlated with incident wave skewness, and was weakly correlated with orbital velocity. Over a tidal cycle, the offshore directed bedform transport was only marginally larger in rip currents than when it was when onshore directed in non-rip conditions. Sediment suspension in the rip current was shown to be dependent on the presence of waves. Suspended sediment transport was dominated by the mean flux. The mean flux contributed > 70% of total suspended transport on 19 out of the 27 observed rip current occurrences. The net contribution of the oscillatory flux was small compared to the mean flux. Within the oscillatory component, a frequency domain partitioning routine showed that the VLF motion was an important mechanism for driving offshore directed sediment transport. This was balanced by onshore directed sediment transport at incident wave frequency of a similar magnitude. Depth integration showed that the mean total suspended sediment transport was in the range of 0.03 kg/m/s to 0.08 kg/m/s. At high tide, when the rip was inactive suspended sediment transport rates were minimal compared to when the rip was active. Bedform transport was (on average) 6% of the total suspended sediment transport in a rip current. The new results presented here show that rip currents make an important contribution to offshore directed sediment transport. The magnitudes of transport indicate that future improvements to morphology change models should include rip driven offshore sediment transport.
3

Sediment Mobilization from Streambank Failures: Model Development and Climate Impact Studies

Stryker, Jody Juniper 01 January 2017 (has links)
This research incorporates streambank erosion and failure processes into a distributed watershed model and evaluates the impacts of climate change on the processes driving streambank sediment mobilization at a watershed scale. Excess sediment and nutrient loading are major water quality concerns for streams and receiving waters. Previous work has established that in addition to surface and road erosion, streambank erosion and failure are primary mechanisms that mobilize sediment and nutrients from the landscape. This mechanism and other hydrological processes driving sediment and nutrient transport are likely to be highly influenced by anticipated changes in climate, particularly extreme precipitation and flow events. This research has two primary goals: to develop a physics-based watershed model with more inclusive representation of sediment by including simulation of streambank erosion and geotechnical failure; and to investigate the impacts of climate change on unstable streams and suspended sediment mobilization by overland erosion, erosion of roads, and the erosion as well as failure of streambanks. This advances mechanistic simulation of suspended sediment mobilization and transport from watersheds, which is particularly valuable for investigating the impacts of climate and land use changes, as well as extreme events. Model development involved coupling two existing physics-based models: the Bank Stability and Toe Erosion Model (BSTEM) and the Distributed Hydrology Soil Vegetation Model (DHSVM). This approach simulates streambank erosion and failure in a spatially explicit environment. The coupled model is applied to the Mad River watershed in central Vermont as a test case. I then use the calibrated Mad River model to predict the response in watershed sediment loading to future climate scenarios that specifically represent local temperature and precipitation trends for the northeastern US, particularly changing trends in the frequency and magnitude of extreme precipitation. Overall the streambank erosion and failure processes are captured in the coupled model approach. Although the presented calibration of the model underestimates suspended sediment concentrations resulting from relatively small storm/flow events, it still improves prediction of cumulative loads and in some cases suspended sediment concentrations during elevated flow events in comparison to model results without including BSTEM. Increases in temperature affect the timing and magnitude of snow melt and spring flows, as well as associated sediment mobilization, in the watershed. Increases in annual precipitation and in extreme precipitation events produce increases in annual as well as peak discharge and sediment loads in the watershed. This research adds to the body of evidence indicating that streambank erosion and failure can be a major source of suspended sediment, and thereby a major source of phosphorus as well. It also shows that local climate trends in the Northeast are likely to result in higher peak discharges and sediment yields from meso-scale, high-gradient watersheds that encompass headwater forested streams and agricultural floodplains. One limitation was that we could not drive the model with meteorological data that represented changes in both temperature and precipitation, highlighting the need for improved climate predictions. This coupled model approach could be parameterized for alternative watersheds and be re-applied to answer various questions related to erosion processes and sediment transport in a watershed. These findings have important implications for resource allocation and targeted watershed management strategies.
4

Modelagem numérica da dinâmica do sistema estuarino Caravelas - Peruíbe, BA / Numerical modeling of the Caravelas-Peruíbe (BA) estuarine system

Santos, Leonardo Augusto Samaritano dos 20 September 2010 (has links)
O presente trabalho visa caracterizar, através de experimentos numéricos, a hidrodinâmica e o transporte de sedimentos em suspensão no sistema estuarino de Caravelas e Peruípe sob diferentes condições forçantes. O sistema é formado por canais que estabelecem a conexão entre os rios Caravelas e Peruípe. Dados de nível de água e velocidade de correntes, obtidos em coletas de campo foram utilizados para aplicar e calibrar o modelo numérico MOHID. Diferentes experimentos numéricos, simulando condições de maré de sizígia e de quadratura com diferentes condições de descarga fluvial, foram realizados. A partir destas simulações foram obtidas distribuições espaciais e pontuais da concentração de sedimentos em suspensão e das correntes forçadas pela maré integradas verticalmente. Em condições de sizígia o estuário é caracterizado por correntes mais intensas e assimétricas, com dominância de vazante. As maiores concentrações médias de sedimento em suspensão ocorreram em condições de sizígia e o transporte de sedimentos resultante foi em direção ao oceano, em função do domínio das correntes de maré vazante. Os experimentos numéricos mostram que os canais que conectam os dois estuários têm papel relevante na dinâmica local. Eles possuem influência na dinâmica sedimentar do sistema estuarino. A hidrodinâmica e o balanço sedimentar do sistema são principalmente modulados pela altura da maré, com pouca contribuição do aporte de água doce. / The aim of this work is to characterize, through numerical modeling experiments, the hydrodynamics and suspended sediment transport dynamics in the Caravelas ? Peruípe estuarine system under different forcing conditions. The system comprises channels that connect the Caravelas and Peruípe rivers. Water level and current velocity data obtained through field campaigns were used to apply and calibrate the MOHID numerical model. Different numerical experiments simulating spring and neap tides with different river discharge conditions have been conducted. Based on these simulations, the hydrodynamics and spatial and temporal distributions of suspended sediment concentrations have been analyzed. During spring tide the estuary is characterized by intense and asymmetric currents (ebb dominated). The highest average suspended sediment concentration occurred during spring tide conditions, with net sediment transport being seaward. The numerical experiments show that the connecting channels play a relevant role in the local suspended sediment dynamics. The hydrodynamic and sediment balance in the system are modulated mainly by the tidal range, with little influence from the freshwater supply.
5

Modelagem numérica da dinâmica do sistema estuarino Caravelas - Peruíbe, BA / Numerical modeling of the Caravelas-Peruíbe (BA) estuarine system

Leonardo Augusto Samaritano dos Santos 20 September 2010 (has links)
O presente trabalho visa caracterizar, através de experimentos numéricos, a hidrodinâmica e o transporte de sedimentos em suspensão no sistema estuarino de Caravelas e Peruípe sob diferentes condições forçantes. O sistema é formado por canais que estabelecem a conexão entre os rios Caravelas e Peruípe. Dados de nível de água e velocidade de correntes, obtidos em coletas de campo foram utilizados para aplicar e calibrar o modelo numérico MOHID. Diferentes experimentos numéricos, simulando condições de maré de sizígia e de quadratura com diferentes condições de descarga fluvial, foram realizados. A partir destas simulações foram obtidas distribuições espaciais e pontuais da concentração de sedimentos em suspensão e das correntes forçadas pela maré integradas verticalmente. Em condições de sizígia o estuário é caracterizado por correntes mais intensas e assimétricas, com dominância de vazante. As maiores concentrações médias de sedimento em suspensão ocorreram em condições de sizígia e o transporte de sedimentos resultante foi em direção ao oceano, em função do domínio das correntes de maré vazante. Os experimentos numéricos mostram que os canais que conectam os dois estuários têm papel relevante na dinâmica local. Eles possuem influência na dinâmica sedimentar do sistema estuarino. A hidrodinâmica e o balanço sedimentar do sistema são principalmente modulados pela altura da maré, com pouca contribuição do aporte de água doce. / The aim of this work is to characterize, through numerical modeling experiments, the hydrodynamics and suspended sediment transport dynamics in the Caravelas ? Peruípe estuarine system under different forcing conditions. The system comprises channels that connect the Caravelas and Peruípe rivers. Water level and current velocity data obtained through field campaigns were used to apply and calibrate the MOHID numerical model. Different numerical experiments simulating spring and neap tides with different river discharge conditions have been conducted. Based on these simulations, the hydrodynamics and spatial and temporal distributions of suspended sediment concentrations have been analyzed. During spring tide the estuary is characterized by intense and asymmetric currents (ebb dominated). The highest average suspended sediment concentration occurred during spring tide conditions, with net sediment transport being seaward. The numerical experiments show that the connecting channels play a relevant role in the local suspended sediment dynamics. The hydrodynamic and sediment balance in the system are modulated mainly by the tidal range, with little influence from the freshwater supply.
6

Développement d'un système de caractérisation des agrégats et des flocs en suspension / Development of a suspended aggregates and flocs carracterisation system

Wendling, Valentin 06 February 2015 (has links)
L'évolution des caractéristiques des particules en suspension au cours de leur transfert au sein des bassins versants est encore mal connue. Ceci limite actuellement notre aptitude à prédire correctement l'érosion ou les flux de matières en suspension (MES) et rend difficile la proposition de pratiques de gestion adaptées aux réglementations en vigueur. A partir d'expériences en milieu contrôlé, nous avons montré que les particules de sols ont tendance à se désagréger en milieu turbulent. Il semble de plus qu'une augmentation de la concentration en suspension accélère cette désagrégation et conduise à des particules plus fines. Même si l'évolution des particules à l'échelle horaire semble rester de second ordre derrière les caractéristiques des sols sources, il est indispensable de pouvoir vérifier si les particules en suspension se comportent de la même manière en conditions naturelles où des interactions complexes entre processus peuvent avoir lieu. Cependant l'absence de méthode de mesure permettant le suivi des propriétés de transport des sédiments en écoulements très concentrés (de 1 plusieurs centaines de grammes par litre) dans les bassins élémentaires limite notre capacité à hiérarchiser les processus à considérer pour modéliser le transfert sédimentaire ou améliorer la gestion opérationnelle des sédiments. Afin de répondre à ce besoin instrumental, nous avons développé un Système de Caractérisation des Agrégats et des Flocs (SCAF). Cet instrument est conçu pour être incorporé dans les stations de suivi hydro-sédimentaire. La mesure est réalisée immédiatement après prélèvement d'un échantillon de la suspension à caractériser par une série de capteurs optiques qui suivent l'évolution de l'absorbance optique durant la sédimentation de l'échantillon. Nous proposons une méthode de traitement des données optiques donnant accès à la distribution des vitesses de chute de la suspension ainsi qu'à un indice de floculation qui renseigne sur la capacité des MES à floculer durant leur sédimentation. Les distributions de vitesses de chute mesurées sont validées sur une large gamme de matériaux et de régimes de sédimentation, afin de couvrir la variabilité des types de matériaux et des concentrations observées en milieu naturel. Pour des sédiments non cohésifs ou floculant peu durant leur sédimentation les mesures du SCAF s'ajustent sur celles issues des autres méthodes. Pour les suspensions qui floculent durant leur sédimentation, la plupart des méthodes de mesure classiques conduisent à des vitesses de chute non représentatives de la suspension. Nous avons montré que les variations des propriétés optiques des matières en suspension lors de leur floculation impactent nos mesures. La méthode proposée permet cependant de quantifier l'augmentation des vitesses de chute avec la floculation, et d'encadrer l'incertitude des mesures. Pour les mesures à forte concentration (>10 g/l), un front d'entravement peut se former durant la sédimentation, le SCAF mesurant alors précisément les vitesses de chute du front. La mesure des distributions des vitesses de chute et de la cohésion des particules en suspension peut permettre d'identifier différentes populations de particules formant une suspension (grains de sables, flocs, matières fines...). Le suivi de telles informations au sein de bassins versants ouvre de nouvelles perspectives pour aborder la connectivité sédimentaire et s'orienter vers une gestion optimale des flux de MES. / Little is known about the processes that govern the evolution of suspended particle characteristics during their transport through a river basin. This is a main limitation for modelling erosion severity or suspended solids (SS) fluxes. It also leads to difficulties to propose management policies adapted to environmental legislation. Based on experiments in controlled environments, we have shown that soil particles tend to disaggregate in turbulent flows. The increase in SS concentration was associated to an increase of the disaggregation of SS particles, leading to smaller final particle sizes. Laboratory experiments also showed that the variability of the particle sizes due to their evolution over one hour was smaller than the variability due to the soil type from which the particles originated. However it is important to ensure that the suspended particles behave in the same way in natural conditions, where complex interactions between hydraulic, chemical and biological processes can influence their evolution. Up to now no measurement method allows measuring continuously the suspended sediment properties in highly concentrated fluids (from one to hundreds grams per liter), such as those observed in headwater catchments during runoff events. This severely limits the possibility to identify the processes that are important to consider in numerical models. The Aggregate and Floc Characterization System (SCAF) has been developed in order to measure SS properties for a wide range of SS concentrations. It was designed to be easily incorporated into sequential samplers. Immediately after the collection of a sample from the river, the sedimentation of the suspension is recorded by continuous measurements of the absorbance by a series of optical sensors. A method was proposed to processes the raw optical data in order to obtain the settling velocity distribution of the suspension. It also provides a flocculation index representing the tendency of the particles to flocculate during their sedimentation. The calculated settling velocity distributions were validated on a large range of materials and settling regimes in order to cover the natural variability of suspended sediments. For sediments that hardly flocculate during their sedimentation or are non-cohesive, the measurements of the SCAF were similar to those from other methods. In the case of suspensions that strongly flocculate during sedimentation, most of the classical methods give non-representative falling velocities. In this case, the optical property of the particles may vary during settling, affecting the optical measurement. The proposed method allowed quantifying the increase of settling velocity induced by flocculation, and provided confidence intervals for the settling velocities. For high SS concentrations ( > 10 g/l), a settling front can be formed during the sedimentation, which is well characterized by the SCAF. The measurement of the settling velocity distributions and of the flocculation index can be used to identify different particle populations (sand grains, flocs, individual particles) forming a suspension. Monitoring these properties in watersheds offers new insights to explore sediment connectivity within river basins and to optimize water management strategies.
7

Inclusive hyper- to dilute-concentrated suspended sediment transport study using modified rouse model: parametrized power-linear coupled approach using machine learning

Kumar, S., Singh, H.P., Balaji, S., Hanmaiahgari, P.R., Pu, Jaan H. 31 July 2022 (has links)
Yes / The transfer of suspended sediment can range widely from being diluted to being hyperconcentrated, depending on the local flow and ground conditions. Using the Rouse model and the Kundu and Ghoshal (2017) model, it is possible to look at the sediment distribution for a range of hyper-concentrated and diluted flows. According to the Kundu and Ghoshal model, the sediment flow follows a linear profile for the hyper-concentrated flow regime and a power law applies for the dilute concentrated flow regime. This paper describes these models and how the Kundu and Ghoshal parameters (linear-law coefficients and power-law coefficients) are dependent on sediment flow parameters using machine-learning techniques. The machine-learning models used are XGboost Classifier, Linear Regressor (Ridge), Linear Regressor (Bayesian), K Nearest Neighbours, Decision Tree Regressor, and Support Vector Machines (Regressor). The models were implemented on Google Colab and the models have been applied to determine the relationship between every Kundu and Ghoshal parameter with each sediment flow parameter (mean concentration, Rouse number, and size parameter) for both a linear profile and a power-law profile. The models correctly calculated the suspended sediment profile for a range of flow conditions ( 0.268 𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑50 ≤ 2.29 𝑚𝑚𝑚𝑚, 0.00105 𝑔𝑔 𝑚𝑚𝑚𝑚3 ≤ particle density ≤ 2.65 𝑔𝑔 𝑚𝑚𝑚𝑚3 , 0.197 𝑚𝑚𝑚𝑚 𝑠𝑠 ≤ 𝑣𝑣𝑠𝑠 ≤ 96 𝑚𝑚𝑚𝑚 𝑠𝑠 , 7.16 𝑚𝑚𝑚𝑚 𝑠𝑠 ≤ 𝑢𝑢∗ ≤ 63.3 𝑚𝑚𝑚𝑚 𝑠𝑠 , 0.00042 ≤ 𝑐𝑐̅≤ 0.54), including a range of Rouse numbers (0.0076 ≤ 𝑃𝑃 ≤ 23.5). The models showed particularly good accuracy for testing at low and extremely high concentrations for type I to III profiles.
8

Flood Suspended Sediment Transport: Combined Modelling from Dilute to Hyper-concentrated Flow

Pu, Jaan H., Wallwork, Joseph T., Khan, M.A., Pandey, M., Pourshahbaz, H., Satyanaga, A., Hanmaiahgari, P.R., Gough, Tim 15 February 2021 (has links)
Yes / During flooding, the suspended sediment transport usually experiences a wide-range of dilute to hyper-concentrated suspended sediment transport depending on the local flow and ground con-ditions. This paper assesses the distribution of sediment for a variety of hyper-concentrated and dilute flows. Due to the differences between hyper-concentrated and dilute flows, a linear-power coupled model is proposed to integrate these considerations. A parameterised method combining the sediment size, Rouse number, mean concentration, and flow depth parameters has been used for modelling the sediment profile. The accuracy of the proposed model has been verified against the reported laboratory measurements and comparison with other published analytical methods. The proposed method has been shown to effectively compute the concentration profile for a wide range of suspended sediment conditions from hyper-concentrated to dilute flows. Detailed com-parisons reveal that the proposed model calculates the dilute profile with good correspondence to the measured data and other modelling results from literature. For the hyper-concentrated profile, a clear division of lower (bed-load) to upper layer (suspended-load) transport can be observed in the measured data. Using the proposed model, the transitional point from this lower to upper layer transport can be calculated precisely.
9

Évaluation de l’effet des vagues de bateau sur les conditions hydrauliques près des berges en milieu fluvial

Péloquin-Guay, Mathilde 09 1900 (has links)
Les vagues de bateau ajoutent une pression supplémentaire sur les berges de rivières et doivent être considérées dans les modèles de prédiction des taux de recul des berges. L’objectif de cette étude est d’examiner le rôle des vagues de bateau sur l’écoulement et le transport en suspension le long des berges en milieu fluvial. Pour atteindre cet objectif, nous utilisons un transect perpendiculaire à la berge de quatre courantomètres électromagnétiques (ECMs) mesurant deux dimensions de l’écoulement et deux turbidimètres (OBSs) placés dos à dos, orientés vers la berge et le large pour mesurer les conditions moyennes et turbulentes de l’écoulement longitudinal et vertical ainsi que les flux de sédiments en suspension provoqués par les vagues. Une chaloupe à moteur de 16 pieds, équipée d’un moteur 40 hp, a été utilisée afin de générer des vagues. Nous avons mesuré l’effet de trois distances à partir de la berge (5, 10, 15 m) et trois vitesses de bateau (5, 15 et 25 km/h) et cinq répliques de chaque combinaison de distance et de vitesse ont été réalisées, totalisant 45 passages. Nous avons caractérisé la variabilité des conditions d’écoulement, de vagues et de transport de sédiments et nous avons réalisé des analyses spectrales afin de séparer les portions oscillatoire et turbulente de l’écoulement généré par les vagues de bateau. L’effet de la distance et de la vitesse du bateau sur le transport de sédiments est non-linéaire et la réponse sédimentaire induite par les passages de bateau montre une variabilité importante entre les répliques et les deux sondes OBS, ce qui suggère un changement morphologique induit par les vagues de bateau. Les corrélations entre les variables d’écoulement et de transport montrent l’importance des relations entre le cisaillement et la puissance de la portion turbulente de l’écoulement avec le transport de sédiments. Cette étude a permis de quantifier les relations entre la dynamique des vagues et les flux de concentrations de sédiments en suspension, ce qui représente une contribution importante au développement de mesures de mitigation dans les environnements fluviaux où les berges sont fragilisées par le trafic plaisancier. / Boat induced waves generate additional stress on banks and should be included in bank erosion predictive models. The objective of this study is to investigate the role of boat generated waves on near bank flow in a fluvial environment. We used a longitudinal array of four bi-directional eletromagnetic current meters (ECMs) perpendicular to the bank and two optical backcattering sensors (OBSs) set back to back, one facing the river bank (inner looking) and the other towards the river (outer looking) to measure mean and turbulent properties of the horizontal and vertical flow velocities and suspended sediment fluxes generated by the waves. The waves were generated using a 16 ft long boat equipped with a 40hp motor. The effect of three different distances between the bank and sailing line (5, 10, 15 m) and of three different speeds of the vessel (5, 15 and 25 km/h) was evaluated. Five replicates of each combination of distance and speed were realized for a total of 45 passages. Variability of flows conditions, wave characteristics and turbidity properties were characterized and spectral analyses were performed to separate oscillatory and turbulent flow induced by boat generated waves. An important variability in suspended sediment response to the passages of boat wave is observed between replications and the effect of speed and distance of sailing line is nonlinear. It was often unbalanced between the inner and outer looking OBS suggesting that the bank changed its morphology. Cross-correlation between hydraulic and turbidity variables show the significance of the relation between shear stress and suspended sediment transport variables. This study provides quantitative relations between wave dynamics and plumes of suspended sediment that could help to develop mitigation measures in fluvial environments where vessel traffic represents a major issue for bank erosion and retreat.
10

Évaluation de l’effet des vagues de bateau sur les conditions hydrauliques près des berges en milieu fluvial

Péloquin-Guay, Mathilde 09 1900 (has links)
Les vagues de bateau ajoutent une pression supplémentaire sur les berges de rivières et doivent être considérées dans les modèles de prédiction des taux de recul des berges. L’objectif de cette étude est d’examiner le rôle des vagues de bateau sur l’écoulement et le transport en suspension le long des berges en milieu fluvial. Pour atteindre cet objectif, nous utilisons un transect perpendiculaire à la berge de quatre courantomètres électromagnétiques (ECMs) mesurant deux dimensions de l’écoulement et deux turbidimètres (OBSs) placés dos à dos, orientés vers la berge et le large pour mesurer les conditions moyennes et turbulentes de l’écoulement longitudinal et vertical ainsi que les flux de sédiments en suspension provoqués par les vagues. Une chaloupe à moteur de 16 pieds, équipée d’un moteur 40 hp, a été utilisée afin de générer des vagues. Nous avons mesuré l’effet de trois distances à partir de la berge (5, 10, 15 m) et trois vitesses de bateau (5, 15 et 25 km/h) et cinq répliques de chaque combinaison de distance et de vitesse ont été réalisées, totalisant 45 passages. Nous avons caractérisé la variabilité des conditions d’écoulement, de vagues et de transport de sédiments et nous avons réalisé des analyses spectrales afin de séparer les portions oscillatoire et turbulente de l’écoulement généré par les vagues de bateau. L’effet de la distance et de la vitesse du bateau sur le transport de sédiments est non-linéaire et la réponse sédimentaire induite par les passages de bateau montre une variabilité importante entre les répliques et les deux sondes OBS, ce qui suggère un changement morphologique induit par les vagues de bateau. Les corrélations entre les variables d’écoulement et de transport montrent l’importance des relations entre le cisaillement et la puissance de la portion turbulente de l’écoulement avec le transport de sédiments. Cette étude a permis de quantifier les relations entre la dynamique des vagues et les flux de concentrations de sédiments en suspension, ce qui représente une contribution importante au développement de mesures de mitigation dans les environnements fluviaux où les berges sont fragilisées par le trafic plaisancier. / Boat induced waves generate additional stress on banks and should be included in bank erosion predictive models. The objective of this study is to investigate the role of boat generated waves on near bank flow in a fluvial environment. We used a longitudinal array of four bi-directional eletromagnetic current meters (ECMs) perpendicular to the bank and two optical backcattering sensors (OBSs) set back to back, one facing the river bank (inner looking) and the other towards the river (outer looking) to measure mean and turbulent properties of the horizontal and vertical flow velocities and suspended sediment fluxes generated by the waves. The waves were generated using a 16 ft long boat equipped with a 40hp motor. The effect of three different distances between the bank and sailing line (5, 10, 15 m) and of three different speeds of the vessel (5, 15 and 25 km/h) was evaluated. Five replicates of each combination of distance and speed were realized for a total of 45 passages. Variability of flows conditions, wave characteristics and turbidity properties were characterized and spectral analyses were performed to separate oscillatory and turbulent flow induced by boat generated waves. An important variability in suspended sediment response to the passages of boat wave is observed between replications and the effect of speed and distance of sailing line is nonlinear. It was often unbalanced between the inner and outer looking OBS suggesting that the bank changed its morphology. Cross-correlation between hydraulic and turbidity variables show the significance of the relation between shear stress and suspended sediment transport variables. This study provides quantitative relations between wave dynamics and plumes of suspended sediment that could help to develop mitigation measures in fluvial environments where vessel traffic represents a major issue for bank erosion and retreat.

Page generated in 0.1163 seconds