• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A comparison of the environmental effects of traditional intensive forestry and the sustainable forestry initiative: a modeling approach at the landscape level

Azevedo, Joao Carlos 30 September 2004 (has links)
Changes in landscape pattern caused by changes in forest management, namely the Sustainable Forestry Initiative (SFI), and the implications of these structural changes on landscape processes were analyzed. Landscape structure was studied based upon the comparison of landscapes with different management histories. Ecological processes were analyzed based upon simulation of stand and landscape attributes of habitats for several vertebrate species and upon simulation of hydrological processes such as water and sediment yield. A methodology to integrate landscape and stand pattern and dynamics with landscape processes was developed for this work. It integrates a forest landscape structure model, several stand level growth and yield models, vertebrate habitat models, and a hydrological model. The comparisons among landscapes revealed that forest management has a strong influence on landscape structure. The SFI program increases fragmentation of the landscape indicated by the presence of more and smaller patches, more edges, more complex shapes, and less and smaller core areas. Traditional intensive and extensive management show comparable patterns characterized by high aggregation and connectivity. Landscapes managed according to the SFI program show higher Habitat Suitability Index (HSI) values for American woodcock, American beaver, wild turkey, fox squirrel, and gray squirrel. HSI is higher for pine warbler in the landscape not managed according to the SFI program. Downy woodpecker and barred owl present very reduced HSI values in either landscape. The SFI program induced fragmentation of the habitat of pine warbler and the establishment of narrow and elongated habitats in a network structure for the remaining species. Both patterns are determined by SMZs. The scenario representing management according to the SFI program presents higher sediment yield at the watershed level than the scenario representing management not according to the SFI program due to higher channel erosion related to the absence of buffer strips in the non-SFI scenario. In general, management according to the SFI program increases landscape diversity and evenness, habitat suitability for most species, potential vertebrate diversity, and provides habitat structure suitable for most species. This management also decreases sediment loss at the watershed level.
2

A comparison of the environmental effects of traditional intensive forestry and the sustainable forestry initiative: a modeling approach at the landscape level

Azevedo, Joao Carlos 30 September 2004 (has links)
Changes in landscape pattern caused by changes in forest management, namely the Sustainable Forestry Initiative (SFI), and the implications of these structural changes on landscape processes were analyzed. Landscape structure was studied based upon the comparison of landscapes with different management histories. Ecological processes were analyzed based upon simulation of stand and landscape attributes of habitats for several vertebrate species and upon simulation of hydrological processes such as water and sediment yield. A methodology to integrate landscape and stand pattern and dynamics with landscape processes was developed for this work. It integrates a forest landscape structure model, several stand level growth and yield models, vertebrate habitat models, and a hydrological model. The comparisons among landscapes revealed that forest management has a strong influence on landscape structure. The SFI program increases fragmentation of the landscape indicated by the presence of more and smaller patches, more edges, more complex shapes, and less and smaller core areas. Traditional intensive and extensive management show comparable patterns characterized by high aggregation and connectivity. Landscapes managed according to the SFI program show higher Habitat Suitability Index (HSI) values for American woodcock, American beaver, wild turkey, fox squirrel, and gray squirrel. HSI is higher for pine warbler in the landscape not managed according to the SFI program. Downy woodpecker and barred owl present very reduced HSI values in either landscape. The SFI program induced fragmentation of the habitat of pine warbler and the establishment of narrow and elongated habitats in a network structure for the remaining species. Both patterns are determined by SMZs. The scenario representing management according to the SFI program presents higher sediment yield at the watershed level than the scenario representing management not according to the SFI program due to higher channel erosion related to the absence of buffer strips in the non-SFI scenario. In general, management according to the SFI program increases landscape diversity and evenness, habitat suitability for most species, potential vertebrate diversity, and provides habitat structure suitable for most species. This management also decreases sediment loss at the watershed level.
3

Comparing Attitudes and Perceptions of Forest Certification Among Foresters, Loggers, and Landowners in Mississippi

Auel, John B 12 August 2016 (has links)
Forest certification plays an important role in the forest products industry in Mississippi. Approximately 17% of the state’s 19 million acres of forest land is certified under one of three major systems in the United States. More than two million acres are certified under Sustainable Forestry Initiative, more than one million acres are certified under American Tree Farm System and over 150,000 acres are certified under Forest Stewardship Council. The goal of forest certification is sustainable use of all forest resources, from timber to clean water to recreation. This goal can only be achieved if nonindustrial private forest landowners, loggers, and forestry professionals all agree on the concepts each system espouses. This project surveyed nonindustrial private landowners in Mississippi, members of the Mississippi Loggers Association, and members of the Mississippi Sustainable Forestry Initiative Implementation Committee, to test their levels of agreement on 12 different Likert Scales or sets of statements representing specific underlying concepts of forest certification. The three groups generally agreed on most aspects of forest certification. There were some significant differences between the groups based on the distribution of responses, however the scale averages never differed by more than 0.7 indicating that while the differences were significant, overall they were still fairly close in their understanding of certification concepts. There were a large number of non-industrial private landowners who were not aware of forest certification. This result has not changed since the last landowner study that was conducted in Mississippi regarding forest certification, almost 10 years ago.

Page generated in 0.1466 seconds