Spelling suggestions: "subject:"asustainable operation"" "subject:"bysustainable operation""
1 |
Searching appropriate conditions for sustainable operation of soil aquifer treatment / 土壌浸透処理の持続的運転のための条件探索Vu, Kiem Thuy 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21097号 / 工博第4461号 / 新制||工||1693(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 伊藤 禎彦, 教授 田中 宏明, 准教授 西村 文武 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
2 |
Optimisation of a hollow fibre membrane bioreactor for water reuseVerrecht, Bart January 2010 (has links)
Over the last two decades, implementation of membrane bioreactors (MBRs) has increased due to their superior effluent quality and low plant footprint. However, they are still viewed as a high-cost option, both with regards to capital and operating expenditure (capex and opex). The present thesis extends the understanding of the impact of design and operational parameters of membrane bioreactors on energy demand, and ultimately whole life cost. A simple heuristic aeration model based on a general algorithm for flux vs. aeration shows the benefits of adjusting the membrane aeration intensity to the hydraulic load. It is experimentally demonstrated that a lower aeration demand is required for sustainable operation when comparing 10:30 to continuous aeration, with associated energy savings of up to 75%, without being penalised in terms of the fouling rate. The applicability of activated sludge modelling (ASM) to MBRs is verified on a community-scale MBR, resulting in accurate predictions of the dynamic nutrient profile. Lastly, a methodology is proposed to optimise the energy consumption by linking the biological model with empirical correlations for energy demand, taking into account of the impact of high MLSS concentrations on oxygen transfer. The determining factors for costing of MBRs differ significantly depending on the size of the plant. Operational cost reduction in small MBRs relies on process robustness with minimal manual intervention to suppress labour costs, while energy consumption, mainly for aeration, is the major contributor to opex for a large MBR. A cost sensitivity analysis shows that other main factors influencing the cost of a large MBR, both in terms of capex and opex, are membrane costs and replacement interval, future trends in energy prices, sustainable flux, and the average plant utilisation which depends on the amount of contingency built in to cope with changes in the feed flow.
|
Page generated in 0.1181 seconds