Spelling suggestions: "subject:"sustained loading"" "subject:"substained loading""
1 |
Behavior Of Cfrp Confined Concrete Specimens Under Temperature Cycles And Sustained LoadsErdil, Baris 01 February 2012 (has links) (PDF)
The application of carbon fiber reinforced polymers (CFRP) is one of the effective retrofitting and strengthening methods that is used worldwide and is starting to be used in Turkey as well because they have high strength and high modulus in the fiber direction, have very low coefficient of thermal expansion when compared to concrete and steel and are known not to corrode. Since FRPs are lightweight, their mass can be neglected when compared to concrete and steel.
However, before proposing this material as an alternative for strengthening and retrofitting applications their long-term behavior should be understood because they are applied on to concrete by several layers of epoxy-based adhesives, which can be affected by change in humidity, temperature and load. Therefore, behavior of CFRP-strengthened structures in varying temperature and humidity conditions must be investigated.
In this dissertation, behavior of CFRP confined cylindrical and prismatic concrete specimens having square cross-section were investigated under sustained compressive loads, dry and wet heating-cooling cycles, and outdoor exposures under direct sunlight, to determine the possible changes in their mechanical properties. Sustained loads were applied as the 40% and 50% of their confined axial load capacity. In addition to the sustained loads, specimens were subjected to 200 heating-cooling cycles between -10° / C to 50° / C. In order to understand the change in behavior of CFRP confined concrete specimens better, they were divided in six groups. A single effect was investigated in each group. After aging tests mechanical properties of the specimens were recorded via monotonic uniaxial loading. It was observed that temperature cycles had little effect on behavior but sustained loads changed the shape of the axial stress-strain diagram and resulted in a dramatic decrease in ultimate strain. Based on the test results and also using the data of similar studies available in the literature, strength and strain models considering the exposures as independent parameters were established and finally axial stress-strain curve was tried to be predicted.
|
2 |
Structural Performance of Reinforced Concrete Beams Subjected to Service Loads Coupled with Corrosion of Flexural ReinforcementAl-Bayti, Abdullah 03 May 2022 (has links)
Corrosion of steel reinforcement has been identified as one of the major problems facing many existing reinforced concrete structures including bridges. The exposure to aggressive environmental conditions such as those with high concentrations of chloride ions due to the use of de-icing salt in cold regions or high concentrations of carbon dioxide due to increased greenhouse gas emissions, accelerate the initiation process of corrosion. As corrosion initiates, the structural performance in terms of load-carrying capacity, ductility, and service life deteriorate over time. Coupling the effect of reinforcement corrosion with service loads may further weaken the structural performance of reinforced concrete bridges due to the presence of transverse load-induced cracks. Accordingly, a research program was conducted to evaluate the structural performance of reinforced concrete beams subjected to coupled effects of service loads and reinforcement corrosion. The research project consisted of combined experimental and numerical investigations.
The experimental phase consisted of tests of nine small-scale beams and six large-scale beams. The beams were designed, constructed, instrumented, and loaded under a four-point load test. The primary test variables were the applied corrosion current density, level of corrosion, and level of sustained loading as percentage of beam ultimate capacity (0% Pu, 40% Pu, and 60% Pu). The corrosion level of steel reinforcement was quantitatively assessed using gravimetric weight measurements and three-dimensional laser scanner technique. Test results indicated that failure of corroded RC beams was brittle due to premature rupture of corroded steel bars, which was attributed to the development of localized corrosion at the sections with flexural cracks in beams. Furthermore, it was found that beams subjected to higher levels of service loads, experienced further reductions in ultimate load capacity and ductility.
In addition, tensile tests were used to evaluate the effect of corrosion on the mechanical performance of steel bars retrieved from the corroded beams. It was found that the tensile strength of corroded steel bars, based on nominal sectional area, was reduced with the increase of corrosion levels. In contrast, the tensile strength, based on minimum sectional area, was not influenced by the non-uniform distribution and localization of corrosion. In fact, there was a slight increase in strength with the increase of corrosion levels.
The numerical phase consisted of finite element analyses of beams using DIANA FE analysis software. A simplified approach was implemented to introduce the damage induced by corrosion into two-dimensional nonlinear FE models, based on the experimental testing of corroded beams and corroded steel bars. The analyses were reasonably accurate in predicting cracking patterns, residual load capacity, residual ductility, and failure modes of corroded beams. Subsequently, the validated model was used to conduct a parametric study on the level of service loads, level of corrosion, strength of concrete, and tensile reinforcement ratio. It was found that the FE model of corroded beams was strongly influenced by the level of service loads, level of corrosion, and tensile reinforcement ratio.
|
3 |
Effect of dwell (hold) time on high temperature fatigue crack growth of AM components / Effekt av uppehållstid (hålltid) på utmattningsspricktillväxt vid hög temperatur hos AM-komponenterVenkatesan, Hemanth January 2023 (has links)
GKN Aerospace AB, Sweden (GAS) is one of the leading companies taking up the charge in manufacturing components using Additive Manufacturing(ed) (AM) techniques in the aerospace sector. They are a hub of engineering and they are a supplier of engine and engine components to the world’s leading aero-engine manufacturers, and airframes to civil and military aircraft manufacturers. A phenomenon that is of interest to designers at GAS is the effects of dwell times on high temperature fatigue, especially how this phenomenon affects the fatigue properties of Laser Powder Bed Fusion (LPBF) Inconel 718 (IN718). IN718 is a versatile alloy that can be used at relatively high temperatures and has excellent weldability and is one of the newer materials replacing expensive materials such as Titanium (and its alloys) in the aerospace industry. The aerospace industry has been pushing for an increase in parts manufactured using AM processes because of the advantage the AM process grants to the production process, however a new manufacturing process for an industry needs to be studied and researched from a failure perspective, i.e. the prominent mode of failure for components manufactured using AM and the underlying factors influencing the failure mechanism must be studied. This thesis explores a solution to predict the life of components based on experimental crack propagation tests wherein the test specimens were subjected to the phenomenon mentioned above. A literature survey was conducted researching ways to model this phenomenon and the factors affecting it. The methods found in the literature survey were far too complex to model for the purposes of this thesis, additionally the methods described in the literature were empirical methods describing the phenomenon, rather than a fundamental study of factors causing the phenomenon and ways to model their influence on the life of the component. Hence, a simple method based on the Palmgren-Miner linear damage summation rule which was coded in the form of a FORTRAN code was utilized to compute the life of the components. Software runs predicting life of physical experiments were conducted and inferences about the predictive method were drawn. The limitations of this method were understood and possible solutions were explored, based on which conclusions were drawn regarding the method’s efficacy in predicting the life of the specimens that underwent dwell loading during fatigue cycling. Finally, the method was applied to a case study to understand the effectiveness of the method. / GKN Aerospace AB, Sverige (GAS) är ett av de ledande företagen som tar upp kampen vid tillverkning av komponenter med hjälp av additiv tillverkning (AM) inom flyg- och rymdsektorn. De är ett nav för ingenjörskonst och de är en leverantör av motorer och motorkomponenter till världens ledande tillverkare av flygmotorer, och civila och militära flygplanstillverkare. Ett fenomen som är av intresse för designers på GAS är effekterna av uppehållstider på högtemperaturutmattning, särskilt hur detta fenomen påverkar utmattningen egenskaper hos Laser Powder Bed Fusion (LPBF) Inconel 718 (IN718). IN718 är en mångsidig legering som kan användas vid relativt höga temperaturer och har utmärkt svetsbarhet och är ett av de nyare materialen som ersätter dyra material såsom titan (och dess legeringar) inom flygindustrin. Flygindustrin har drivit på för en ökning av delar som tillverkas med additiva tillverkningsprocesser på grund av den fördel som tillverkningsprocessen ger en ny tillverkningsprocess för en industri behöver dock studeras och forskat ur ett misslyckandeperspektiv, dvs. det framträdande sättet att misslyckas för komponenter som tillverkats med hjälp av additiv tillverkning och de bakomliggande faktorer som mekanismen måste studeras. Denna avhandling utforskar en lösning för att förutsäga livslängden för komponenter baserat på experimentella sprickutbredningstester där provexemplaren utsattes för fenomenet som nämns ovan. En litteraturstudie genomfördes för att undersöka olika sätt att modellera detta fenomenet och de faktorer som påverkar det. Metoderna som framkom i litteraturstudien var alldeles för komplexa för att modellera för denna avhandling, dessutom är metoderna som beskrivits i litteraturen var empiriska metoder som beskriver fenomenet, snarare än en grundläggande studie av de faktorer som orsakar fenomenet och sätt att modellera deras inverkan på komponentens livslängd. Därav en enkel metod baserad på Palmgren-Miners linjära skadesummeringsregel som kodades i form av en FORTRAN-kod användes för att beräkna livslängden för komponenterna. Programvarukörningar som förutspådde livslängden för fysiska experiment genomfördes och slutsatser om den prediktiva metoden drogs. Begränsningarna med denna metod förstods och möjliga lösningar utforskades. Som låg till grund för de slutsatser som drogs om metodens effektivitet när det gäller att förutsäga livslängden för de prover som genomgick uppehållsbelastning underutmattningscykling. Slutligen tillämpades metoden på en fallstudie för att förstå effektiviteten avmetod.
|
4 |
Anchorage in Concrete Structures : Numerical and Experimental Evaluations of Load-Carrying Capacity of Cast-in-Place Headed Anchors and Post-Installed Adhesive AnchorsNilforoush, Rasoul January 2017 (has links)
Various anchorage systems including both cast-in-place and post-installed anchors have been developed for fastening both non-structural and structural components to concrete structures. The need for increased flexibility in the design of new structures and strengthening of existing concrete structures has led to increased use of various metallic anchors in practice. Although millions of fasteners are used each year in the construction industry around the world, knowledge of the fastening technology remains poor. In a sustainable society, buildings and structures must, from time to time, be adjusted to meet new demands. Loads on structures must, in general, be increased to comply with new demands, and the structural components and the structural connections must also be upgraded. From the structural connection point of view, the adequacy of the current fastenings for the intended increased load must be determined, and inadequate fastenings must either be replaced or upgraded. The current design models are generally believed to be conservative, although the extent of this behavior is not very clear. To address these issues, the current models must be refined to allow the design of new fastenings and also the assessment of current anchorage systems in practice. The research presented in this thesis consists of numerical and experimental studies of the load-carrying capacity of anchors in concrete structures. Two different types of anchors were studied: (I) cast-in-place headed anchors, and (II) post-installed adhesive anchors. This research focused particularly on the tensile load-carrying capacity of cast-in-place headed anchors and also on the sustained tension loading performance of post-installed adhesive anchors. The overall objective of this research was to provide knowledge for the development of improved methods of designing new fastening systems and assessing the current anchorage systems in practice. For the cast-in-place headed anchors (I), the influence of various parameters including the size of anchor head, thickness of concrete member, amount of orthogonal surface reinforcement, presence of concrete cracks, concrete compressive strength, and addition of steel fibers to concrete were studied. Among these parameters, the influence of the anchor head size, member thickness, surface reinforcement, and cracked concrete was initially evaluated via numerical analysis of headed anchors at various embedment depths. Although these parameters have considerable influence on the anchorage capacity and performance, this influence is not explicitly considered by the current design models. The numerical results showed that the tensile breakout capacity of headed anchors increases with increasing member thickness and/or increasing size of the anchor head or the use of orthogonal surface reinforcement. However, their capacity decreased considerably in cracked concrete. Based on the numerical results, the current theoretical model for the tensile breakout capacity of headed anchors was extended by incorporating several modification factors that take the influence of the investigated parameters into account. In addition, a supplementary experimental study was performed to verify the numerically obtained findings and the proposed refined model. The experimental results corresponded closely to the numerical results, both in terms of failure load and failure pattern, thereby confirming the validity of the proposed model. The validity of the model was further confirmed through experimental results reported in the literature. Additional experiments were performed to determine the influence of the concrete compressive strength and the addition of steel fiber to concrete on the anchorage capacity and performance. These experiments showed that the anchorage capacity and stiffness increase considerably with increasing concrete compressive strength, but the ductility of the anchor decreases. However, the anchorage capacity and ductility increased significantly with the addition of steel fibers to the concrete mixture. The test results also revealed that the tensile breakout capacity of headed anchors in steel fiber-reinforced concrete is significantly underestimated by the current design model. The long-term performance and creep behavior of the post-installed headed anchors (II) was evaluated from the results of long-time tests on adhesive anchors under sustained loads. In this experimental study, adhesive anchors of various sizes were subjected to various sustained load levels for up to 28 years. The anchors were also exposed to several in-service conditions including indoor temperature, variations in the outdoor temperature and humidity, wetness (i.e., water on the surface of concrete), and the presence of salt (setting accelerant) additives in the concrete. Among the tested in-service conditions, variations in the outdoor temperature and humidity had the most adverse effect on the long-term sustained loading performance of the anchors. Based on the test results, recommendations were proposed for maximum sustained load levels under various conditions. The anchors tested under indoor conditions could carry sustained loads of up to 47% of their mean ultimate short-term capacities. However, compared with these anchors, the anchors tested under outdoor conditions exhibited larger creep deformation and failure occurred at sustained loads higher than 23% of their mean ultimate short-term capacities. Salt additives in concrete and wet conditions had negligible influence on the long-term performance of the anchors, although the wet condition resulted in progressive corrosion of the steel. Based on the experimental results, the suitability of the current testing and approval provisions for qualifying adhesive anchors subjected to long-term sustained tensile loads was evaluated. The evaluations revealed that the current approval provisions are not necessarily reliable for qualifying adhesive anchors for long-term sustained loading applications. Recommendations were given for modifying the current provisions to ensure safe long-term performance of adhesive anchors under sustained loads.
|
Page generated in 0.0822 seconds