• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The relevance of specific c-reactive protein genetic variants towards cardiovascular disease risk in a black South African population undergoing an epidemiological transition / Bianca Swanepoel.

Swanepoel, Bianca January 2013 (has links)
Introduction: In Africa, it is estimated that cardiovascular disease (CVD) will affect approximately 1.3 million people per annum over the following 20 years. C-reactive protein (CRP) is a predictor of CVD risk and certain CRP gene polymorphisms can result in altered CRP concentrations. The distribution of CRP gene polymorphisms is ethnic-specific and extrapolating information from other populations to the black South African population, reported to harbour considerable genetic variation, should be avoided. This highlights the fact that genetic research among black South Africans is necessary. Objectives: The main aim of this dissertation was to determine the association between various polymorphisms (reported and novel [single nucleotide polymorphisms (SNPs)] within the CRP gene with CRP concentrations [measured as high sensitivity (hs)-CRP concentrations] in a black South African population undergoing an epidemiological transition. Interactions between specific CRP polymorphisms and certain environmental factors on hs-CRP concentrations were also investigated. Methods: This cross-sectional study (n=1,588) was nested within the Prospective Urban and Rural Epidemiological (PURE) study. Genotyping was performed using Illumina VeraCode technology on the BeadXpress® platform. Hs-CRP concentrations were measured by the use of a sequential multiple analyser computer (SMAC) through a particle-enhanced immunoturbidometric assay. Results: All the SNPs adhered to the assumptions of Hardy-Weinberg equilibrium, although the distribution of several SNPs differed from that reported in other population groups. Three SNPs (rs3093058, rs3093062 and rs3093068) were associated with a significant (p ≤ 0.05) increase in CRP concentrations. Five SNPs (rs1205, rs1341665, rs2794520, rs7553007 and rs2027471) were associated with a significant (p ≤ 0.05) decrease in CRP concentrations. This difference in effect was most probably due to changes in gene function brought about by the localisation of these SNPs in the CRP gene. Men and urban individuals were more likely to present with significant associations between the SNPs investigated and CRP concentrations. The difference in the prevalence of the alleles associated with higher CRP concentrations in this population compared to non-African populations could possibly explain the increased CRP concentrations that are observed in the black South African population. Gene-gender (rs1205, rs1341665 and rs2027474) as well as gene-environmental (rs3093068) interactions were also observed. Conclusions: CRP concentrations are in themselves a complex trait and there are many factors at play that influence their expression. Numerous factors (both genetic and environmental) are involved and no single factor acting alone is likely to have enough of an influence to be used as a clinical diagnostic test of CRP concentrations. These results provide valuable information on the regulation of CRP in a black South African population as well as contribute to the literature of CRP on a global level. / Thesis (MSc (Nutrition))--North-West University, Potchefstroom Campus, 2013.
2

The relevance of specific c-reactive protein genetic variants towards cardiovascular disease risk in a black South African population undergoing an epidemiological transition / Bianca Swanepoel.

Swanepoel, Bianca January 2013 (has links)
Introduction: In Africa, it is estimated that cardiovascular disease (CVD) will affect approximately 1.3 million people per annum over the following 20 years. C-reactive protein (CRP) is a predictor of CVD risk and certain CRP gene polymorphisms can result in altered CRP concentrations. The distribution of CRP gene polymorphisms is ethnic-specific and extrapolating information from other populations to the black South African population, reported to harbour considerable genetic variation, should be avoided. This highlights the fact that genetic research among black South Africans is necessary. Objectives: The main aim of this dissertation was to determine the association between various polymorphisms (reported and novel [single nucleotide polymorphisms (SNPs)] within the CRP gene with CRP concentrations [measured as high sensitivity (hs)-CRP concentrations] in a black South African population undergoing an epidemiological transition. Interactions between specific CRP polymorphisms and certain environmental factors on hs-CRP concentrations were also investigated. Methods: This cross-sectional study (n=1,588) was nested within the Prospective Urban and Rural Epidemiological (PURE) study. Genotyping was performed using Illumina VeraCode technology on the BeadXpress® platform. Hs-CRP concentrations were measured by the use of a sequential multiple analyser computer (SMAC) through a particle-enhanced immunoturbidometric assay. Results: All the SNPs adhered to the assumptions of Hardy-Weinberg equilibrium, although the distribution of several SNPs differed from that reported in other population groups. Three SNPs (rs3093058, rs3093062 and rs3093068) were associated with a significant (p ≤ 0.05) increase in CRP concentrations. Five SNPs (rs1205, rs1341665, rs2794520, rs7553007 and rs2027471) were associated with a significant (p ≤ 0.05) decrease in CRP concentrations. This difference in effect was most probably due to changes in gene function brought about by the localisation of these SNPs in the CRP gene. Men and urban individuals were more likely to present with significant associations between the SNPs investigated and CRP concentrations. The difference in the prevalence of the alleles associated with higher CRP concentrations in this population compared to non-African populations could possibly explain the increased CRP concentrations that are observed in the black South African population. Gene-gender (rs1205, rs1341665 and rs2027474) as well as gene-environmental (rs3093068) interactions were also observed. Conclusions: CRP concentrations are in themselves a complex trait and there are many factors at play that influence their expression. Numerous factors (both genetic and environmental) are involved and no single factor acting alone is likely to have enough of an influence to be used as a clinical diagnostic test of CRP concentrations. These results provide valuable information on the regulation of CRP in a black South African population as well as contribute to the literature of CRP on a global level. / Thesis (MSc (Nutrition))--North-West University, Potchefstroom Campus, 2013.
3

The influence of genetic polymorphisms of fibrinogen genes on changes in total fibrinogen and fibrinogen gamma prime concentrations over time in black South Africans / Ané Jobse

Jobse, Ané January 2014 (has links)
INTRODUCTION AND AIM - Cardiovascular disease is globally a major risk factor for morbidity and mortality. It is caused by various factors, one of which is an abnormal haemostatic process. Fibrinogen is a haemostatic factor that is considered to be an independent risk factor for cardiovascular disease. Elevated fibrinogen can be caused by environmental and genetic factors which increase the risk of the occurrence of thrombosis. The fibrinogen y' chain, which is one of the three chains of fibrinogen, has two different variants, the yA and y’. The presence of the fibrinogen y’ chain has been associated with thrombotic disorders. Many studies have investigated the fibrinogen variables in Caucasian individuals, but only a few such studies have been conducted on non-Caucasian individuals. The genetic diversity of ethnic groups differs and could cause differences in the fibrinogen variables between these groups. Fibrinogen is known to increase with age; therefore to explain changes over time in fibrinogen concentrations it was also important to investigate whether genetic determinants and possible gene–environment interactions influenced fibrinogen over time. In this study the main aim was to determine the change in the fibrinogen variables over a five-year period within a black South African cohort subdivided according to genotypes associated with fibrinogen variables, and to determine whether the observed changes were modulated by environmental factors. PARTICIPANTS AND METHODS - Data [baseline (n=2010) and follow-up (n=1288)] were collected in the Prospective Urban and Rural Epidemiology (PURE) study during 2005 and 2010 from apparently healthy black men and women aged between 35 and 65 years and residing in rural or urban settlements. Experimental methods included analysis of fibrinogen and fibrinogen y’ concentrations, single nucleotide polymorphisms (SNPs) and determination of environmental factors associated with the fibrinogen variables. RESULTS - The fibrinogen variables increased significantly from 2005 to 2010 in both the rural and urban participants, as well as in both men and women. The major environmental factors that affected the fibrinogen variables were C-reactive protein (CRP), interleukin-6 (IL-6), body mass index (BMI), glycated haemoglobin (HbA1c), age, blood lipids, human immunodeficiency virus (HIV) and tobacco use. Fibrinogen increased consistently from 2005 to 2010 in the respective genotypes of all SNPs analysed, except in the FGG 9340 T>C homozygous mutant carriers. Fibrinogen y’ also increased in general in most genotypes from 2005 to 2010, except in the FGG 10034 C>T mutant allele carriers, where a decrease was observed. It was determined that CRP was the only environmental factor that influenced the change in fibrinogen over time and that FGG 10034 C>T was the only SNP that influenced the change in fibrinogen y’ over the five years. Four gene–environment interactions also influenced fibrinogen on a cross-sectional level, i.e. FGA 2224 G>A with age, FGB Arg448Lys with HIV status, FGB 1643 C>T with urbanisation and FGB 1038 G>A with HbA1c. Only the FGG 9340 T>C with HbA1c interaction was found to predict change in fibrinogen concentrations over the five years. CONCLUSION - Both environmental and genetic factors significantly influenced the fibrinogen variables cross-sectionally as well as prospectively. It was clear that the influence of the environmental factors was mediated by genetic polymorphisms and vice versa, as can be seen by the gene–environment interactions found in this study. An important finding of this study was that the interaction of HbA1c with two SNPs on fibrinogen variables may explain the known inconsistent relationship found between fibrinogen concentrations and diabetes. / MSc (Dietetics), North-West University, Potchefstroom Campus, 2014
4

The influence of genetic polymorphisms of fibrinogen genes on changes in total fibrinogen and fibrinogen gamma prime concentrations over time in black South Africans / Ané Jobse

Jobse, Ané January 2014 (has links)
INTRODUCTION AND AIM - Cardiovascular disease is globally a major risk factor for morbidity and mortality. It is caused by various factors, one of which is an abnormal haemostatic process. Fibrinogen is a haemostatic factor that is considered to be an independent risk factor for cardiovascular disease. Elevated fibrinogen can be caused by environmental and genetic factors which increase the risk of the occurrence of thrombosis. The fibrinogen y' chain, which is one of the three chains of fibrinogen, has two different variants, the yA and y’. The presence of the fibrinogen y’ chain has been associated with thrombotic disorders. Many studies have investigated the fibrinogen variables in Caucasian individuals, but only a few such studies have been conducted on non-Caucasian individuals. The genetic diversity of ethnic groups differs and could cause differences in the fibrinogen variables between these groups. Fibrinogen is known to increase with age; therefore to explain changes over time in fibrinogen concentrations it was also important to investigate whether genetic determinants and possible gene–environment interactions influenced fibrinogen over time. In this study the main aim was to determine the change in the fibrinogen variables over a five-year period within a black South African cohort subdivided according to genotypes associated with fibrinogen variables, and to determine whether the observed changes were modulated by environmental factors. PARTICIPANTS AND METHODS - Data [baseline (n=2010) and follow-up (n=1288)] were collected in the Prospective Urban and Rural Epidemiology (PURE) study during 2005 and 2010 from apparently healthy black men and women aged between 35 and 65 years and residing in rural or urban settlements. Experimental methods included analysis of fibrinogen and fibrinogen y’ concentrations, single nucleotide polymorphisms (SNPs) and determination of environmental factors associated with the fibrinogen variables. RESULTS - The fibrinogen variables increased significantly from 2005 to 2010 in both the rural and urban participants, as well as in both men and women. The major environmental factors that affected the fibrinogen variables were C-reactive protein (CRP), interleukin-6 (IL-6), body mass index (BMI), glycated haemoglobin (HbA1c), age, blood lipids, human immunodeficiency virus (HIV) and tobacco use. Fibrinogen increased consistently from 2005 to 2010 in the respective genotypes of all SNPs analysed, except in the FGG 9340 T>C homozygous mutant carriers. Fibrinogen y’ also increased in general in most genotypes from 2005 to 2010, except in the FGG 10034 C>T mutant allele carriers, where a decrease was observed. It was determined that CRP was the only environmental factor that influenced the change in fibrinogen over time and that FGG 10034 C>T was the only SNP that influenced the change in fibrinogen y’ over the five years. Four gene–environment interactions also influenced fibrinogen on a cross-sectional level, i.e. FGA 2224 G>A with age, FGB Arg448Lys with HIV status, FGB 1643 C>T with urbanisation and FGB 1038 G>A with HbA1c. Only the FGG 9340 T>C with HbA1c interaction was found to predict change in fibrinogen concentrations over the five years. CONCLUSION - Both environmental and genetic factors significantly influenced the fibrinogen variables cross-sectionally as well as prospectively. It was clear that the influence of the environmental factors was mediated by genetic polymorphisms and vice versa, as can be seen by the gene–environment interactions found in this study. An important finding of this study was that the interaction of HbA1c with two SNPs on fibrinogen variables may explain the known inconsistent relationship found between fibrinogen concentrations and diabetes. / MSc (Dietetics), North-West University, Potchefstroom Campus, 2014

Page generated in 0.0567 seconds