• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse des instabilités de combustion dans des foyers de centrale thermique fonctionnant au fioul lourd / Analysis of combustion instabilities in thermal power plants operating with heavy fuel oil

Mirat, Clément 08 July 2015 (has links)
Des crises vibratoires ont été constatées dans plusieurs centrales thermiques d’EDF opérant avec du fioul lourd, certaines ayant entraîné l’arrêt du foyer. Ce travail traite des instabilités de combustion pouvant se déclencher dans ce type de système où le combustible liquide est injecté avec de la vapeur d’eau et où l’écoulement d’air est mis en rotation. Ces phénomènes vibratoires résultent d’un couplage résonant entre la dynamique de la combustion et l’acoustique du foyer. La réponse acoustique des flammes diphasiques non-prémélangées swirlées reste largement méconnue et est difficilement analysable sur le foyer réel. L’objectif de ce travail est donc d’étudier la stabilité des chaudières EDF à partir de l’analyse de la réponse d’une flamme diphasique non-prémélangée swirlée issue d’un injecteur générique et soumise à des perturbations de la vitesse acoustique. Cette réponse est déterminée sur un dispositif original (DIFAV) équipé d’un swirler et d’un injecteur bi-fluides fonctionnant à la vapeur d’eau et au dodécane. Ce système est constitué des principaux éléments des brûleurs utilisés sur les centrales thermiques EDF à une échelle 1/7000. Le dispositif est conçu pour facilement modifier la géométrie de la tête d’injection, les conditions d’injection de combustible et de vapeur et ainsi contrôler le spray généré. Des visualisations à la sortie d’une buse d’injection montrent l’influence de la topologie de l’écoulement diphasique dans l’injecteur sur la taille des gouttes mesurées dans le spray. Des mesures de taille et de vitesse des gouttes lorsque le rapport des débits de vapeur et de combustible (GLR) est modifié sont réalisées. Ces données comparées à des modèles ont permis d’estimer l’évolution de la taille des gouttes générées par l’injecteur qui équipe les centrales thermiques lorsque le GLR varie. Une analyse modale du foyer DIFAV et d’un modèle simplifié de la chaudière réelle est ensuite menée. Les fréquences propres et les taux d’amortissement du foyer DIFAV sont déterminés expérimentalement en soumettant le système à une modulation acoustique externe. Un modèle acoustique simplifié composé de trois cavités couplées représentatif du brûleur DIFAV est également développé. Des simulations acoustiques réalisées avec COMSOL Multiphysics sur une coupe transverse d’une chaudière générique représentative de la chaudière industrielle permettent d’identifier trois modes à basses fréquences établis entre les plenums et la chambre de combustion qui sont susceptibles d’être instables. La sensibilité de ces modes à la géométrie du foyer et aux conditions limites est étudiée. La réponse de la flamme générique lorsqu’elle est soumise à des modulations acoustiques de l’écoulement d’air en amont du brûleur est ensuite mesurée sur le banc DIFAV pour différents niveaux d’excitation et deux topologies de flamme lorsque les conditions d’injection sont modifiées. Les mécanismes qui pilotent l’évolution du gain de l’une des fonctions de transfert généralisées (FDF) de la flamme sont étudiés à l’aide de visualisations en moyenne de phase de l’écoulement et de mesures des vitesses axiale et azimutale de l’écoulement d’air au cours d’un cycle de modulation. Une forte sensibilité de la phase de la FDF à l’amplitude des perturbations acoustiques est observée. Un adimensionnement par le nombre de Strouhal basé sur la vitesse débitante et la longueur efficace de la flamme est proposé pour transposer ces FDFs sur le brûleur réel. Une analyse de stabilité du foyer DIFAV est réalisée en intégrant les FDF au modèle acoustique afin de déterminer les cycles limites des oscillations lorsque la longueur de la chambre de combustion varie. Ces calculs sont comparés aux fréquences des instabilités auto-entretenues mesurées aux cycles limites dans le foyer DIFAV. [...] / Vibratory crises have been observed in EDF thermal power plants operating with heavy fuel oil. Such instabilities may lead to shutdown and damage the boiler. This work deals with combustion instabilities that can take place in boilers equipped with steam-assisted atomizers and where the airflow is swirled. These vibratory phenomena result from a resonant coupling between the combustion dynamics and the boiler acoustics. Analyses of combustion dynamics of non-premixed swirling spray flames remain rare and are difficult to realize on the real system. The objective of this work is to analyze the stability of EDF boilers using the response of generic non-premixed swirling spray flames submitted to acoustic velocity disturbances. This response is determined on an original device (DIFAV) equipped with a swirling vane and a twin-fluid atomizer operated with steam and dodecane. This burner is equipped with the main elements of those used in the thermal power plant, but has a reduced scale of 1/7000. The influence of the injector geometry and of the operating conditions on the spray generated by the injector can be studied. Spray visualizations at the outlet of the injector reveal the relationship between the topology of the two-phase flow in the injector and the measured droplet size. Measurements of the droplet diameter and velocity as a function of the gas-to-liquid ratio (GLR) have been performed at the outlet of the injector. These data have been compared to models and were used to estimate the evolution of the droplets diameter as a function of the GLR generated by the industrial injector. A modal analysis of the DIFAV combustor is then carried out and a simplified acoustic model made of three coupled cavities is developed. The natural frequencies and damping rates of the DIFAV combustor are determined experimentally when it is submitted to acoustic modulation. Acoustic simulations are performed with COMSOL Multiphysics on a simplified geometrical model of the industrial boiler. Three low frequency modes established between the plenums and the combustion chamber have been identified and may be unstable. Their sensitivity to modifications of the boiler geometry and boundary conditions are studied. Flame responses subjected to acoustic modulations of the airflow rate are then measured on the DIFAV combustor for several amplitudes and two flames topologies obtained at globally lean condition. Phase-conditioned flame visualizations and measurements of swirl number fluctuations during an acoustic forcing cycle are conducted to explain the mechanisms that control the evolution of gain of the Flame Describing Function (FDF). A high sensitivity of the phase of the FDF to the amplitude of the acoustic disturbance is observed. The Strouhal number based on the airflow velocity and the effective length of the flame is used to transpose these FDF on the industrial burner. FDF are integrated in the acoustic model of the DIFAV setup to carry out a stability analysis and predict the limit cycle oscillations as a function of the combustion chamber length. These calculations are compared to frequencies of self-sustained instability measured at the limit cycles in the DIFAV combustor. A reasonable agreement is obtained showing the validity of the stability analysis for the non-premixed two-phase flames investigated based on the knowledge of their FDF. Finally, a stability analysis of the EDF boiler is conducted with the COMSOL Multiphysics model by including the acoustic flame response of the industrial burner in the simulation. This FDF is deducted from the dimensionless FDF measured on the generic burner. The Rayleigh criterion is used to analyze the stability of the combustor as a function of the flame length for different boundary conditions. Indications are given to improve the stability of the EDF boiler.
2

Analysis Techniques for Characterizing High Power Turbulent Swirl Flames

Robert Z Zhang (6717671) 16 August 2019 (has links)
<div>High speed laser diagnostics are performed in two vastly differing swirl combustors at conditions relevant for industrial gas turbines. This high quality data can not only be used to elucidate key features of the flow field but also for validation of computational models simulating turbulence, chemistry, and their interactions. The first combustor is a piloted lean premixed prevaporized arrangement common in aviation applications. Fueling parameters are varied and sensitivity towards the pilot flame is observed. Conditioning to the stagnation line demonstrates increased fluctuations of shear and rotation in the inner shear layer when the pilot fueling is reduced.</div><div><br></div><div>The second flame has a simpler configuration with a single swirler and combusting natural gas. Thermoacoustic instability coupled to a helical precessing vortex core is found at certain conditions. Sparse Dynamic Mode Decomposition and phase averaging is applied to the velocity fields to create a three dimensional reconstruction of the helical vortex core in a non-precessing reference frame. Heat release is found to be correlated to the interaction strength of the central recirculation bubble and the helical vortex core. </div><div><br></div><div> </div><div>Finally, intermittent phenomena within a thermoacoustic instability are examined. The most prominent deviation is that the flame is observed to randomly lift and reattach. In addition, a convolutional neural network is employed to extract the morphology from otherwise qualitative OH species imaging. The average characteristics of the lifted and attached flame are compared and dramatic differences are found. All of the flow structures have been altered such as the precessing vortex core being greatly intensified during flame lift-off. Evaluating the average events before flame lift-off revealed the importance of conditions at the combustor inlet. However, evidence for a future reattachment event was only found with a less spatially confined perspective. In addition, transition to lift-off was very sudden while reattachment was far slower.</div>
3

Simulations of turbulent swirl combustors

Ayache, Simon Victor January 2012 (has links)
This thesis aims at improving our knowledge on swirl combustors. The work presented here is based on Large Eddy Simulations (LES) coupled to an advanced combustion model: the Conditional Moment Closure (CMC). Numerical predictions have been systematically compared and validated with detailed experimental datasets. In order to analyze further the physics underlying the large numerical datasets, Proper Orthogonal Decomposition (POD) has also been used throughout the thesis. Various aspects of the aerodynamics of swirling flames are investigated, such as precession or vortex formation caused by flow oscillations, as well as various combustion aspects such as localized extinctions and flame lift-off. All the above affect flame stabilization in different ways and are explored through focused simulations. The first study investigates isothermal air flows behind an enclosed bluff body, with the incoming flow being pulsated. These flows have strong similarities to flows found in combustors experiencing self-excited oscillations and can therefore be considered as canonical problems. At high enough forcing frequencies, double ring vortices are shed from the air pipe exit. Various harmonics of the pulsating frequency are observed in the spectra and their relation with the vortex shedding is investigated through POD. The second study explores the structure of the Delft III piloted turbulent non-premixed flame. The simple configuration allows to analyze further key combustion aspects of combustors, with further insights provided on the dynamics of localized extinctions and re-ignition, as well as the pollutants emissions. The third study presents a comprehensive analysis of the aerodynamics of swirl flows based on the TECFLAM confined non-premixed S09c configuration. A periodic component inside the air inlet pipe and around the central bluff body is observed, for both the inert and reactive flows. POD shows that these flow oscillations are due to single and double helical vortices, similar to Precessing Vortex Cores (PVC), that develop inside the air inlet pipe and whose axes rotate around the burner. The combustion process is found to affect the swirl flow aerodynamics. Finally, the fourth study investigates the TECFLAM configuration again, but here attention is given to the flame lift-off evident in experiments and reproduced by the LES-CMC formulation. The stabilization process and the pollutants emission of the flame are investigated in detail.

Page generated in 0.0436 seconds