• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A power-efficient wireless neural stimulating system with inductive power transmission

Lee, Hyung-Min 08 June 2015 (has links)
The objective of the proposed research is to advance the power efficiency of wireless neural stimulating systems in inductively powered implantable medical devices (IMD). Several innovative system- and circuit-level techniques are proposed towards the development of power-management circuits and wireless neural stimulating systems with inductive power transmission to improve the overall stimulation power efficiency. Neural stimulating IMDs have been proven as effective therapies to alleviate neurological diseases, while requiring high power and performance for more efficacious treatments. Therefore, power-management circuits and neural stimulators in IMDs should have high power efficiencies to operate with smaller received power from a larger distance. Neural stimulating systems are also required to have high stimulation efficacy for activating the target tissue with a minimum amount of energy, while ensuring charge-balanced stimulation. These features provide several advantages such as a long battery life in an external power transmitter, extended-range inductive power transfer, efficacious and safe stimulation, and less tissue damage from overheating. The proposed research presents several approaches to design and implement the power-efficient wireless neural stimulating IMDs: 1) optimized power-management circuits for inductively powered biomedical microsystems, 2) a power-efficient neural stimulating system with adaptive supply control, and 3) a wireless switched-capacitor stimulation (SCS) system, which is a combination structure of the power-management circuits and neural stimulator, to maximize both stimulator efficiency (before electrodes) and stimulus efficacy (after electrodes).

Page generated in 0.0925 seconds