• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 35
  • 14
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 117
  • 31
  • 28
  • 24
  • 22
  • 15
  • 14
  • 13
  • 13
  • 13
  • 11
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Symmetries of Julia sets for analytic endomorphisms of the Riemann sphere / Simetrias de conjuntos de Julia para endomorfismos analíticos da esfera de Riemann

Ferreira, Gustavo Rodrigues 25 July 2019 (has links)
Since the 1980s, much progress has been done in completely determining which functions share a Julia set. The polynomial case was completely solved in 1995, and it was shown that the symmetries of the Julia set play a central role in answering this question. The rational case remains open, but it was already shown to be much more complex than the polynomial one. In this thesis, we review existing results on rational maps sharing a Julia set, and offer results of our own on the symmetry group of such maps. / Desde a década de oitenta, um enorme progresso foi feito no problema de determinar quais funções têm o mesmo conjunto de Julia. O caso polinomial foi completamente respondido em 1995, e mostrou-se que as simetrias do conjunto de Julia têm um papel central nessa questão. O caso racional permanece aberto, mas já se sabe que ele é muito mais complexo do que o polinomial. Nesta dissertação, nós revisamos resultados existentes sobre aplicações racionais com o mesmo conjunto de Julia e apresentamos nossos próprios resultados sobre o grupo de simetrias de tais aplicações.
12

Grupoides de Lie e o teorema de Noether na formulação lagrangiana da teoria clássica de campos / Lie groupoids and Noether\'s theorem in the Lagrangian formalism of classical field theory

Luiz Henrique Pereira Pêgas 12 September 2014 (has links)
O objetivo desta tese é oferecer um arcabouço que permita a modelagem de simetrias em fibrados suaves, que possuam um bom comportamento local. Para tanto, usa-se ferramentas de grupoides de Lie e correlatas, com a finalidade de reduzir, quando possível, simetrias dadas pela ação de um grupo diferenciável, possivelmente de dimensão infinita, sobre um fibrado suave, a problemas em dimensão finita. Uma definição de invariância de uma forma diferencial, definida no espaço total de um fibrado suave, sob a ação de um grupoide de Lie, é apresentada e desenvolvida. A seguir, discute-se estas ferramentas no contexto da formulação lagrangiana da teoria clássica de campos com o objetivo de descrever, simultaneamente, simetrias internas e no espaço-tempo, de maneira unificada. Obtém-se então, nesta linguagem, alguns objetos de estudo centrais da teoria, como os teoremas de Noether e, no caso das teorias de calibre, os teoremas de acoplamento mínimo e Utiyama. Por fim, discute-se brevemente o caso de simetrias a menos de elementos de contato e divergências totais. / The aim of this thesis is to provide a framework that allows the modelling of symmetries in smooth fibre bundles which have good local behaviour. For that, we use Lie groupoids and related tools in order to reduce, whenever possible, symmetries given by the action of a possibly infinite dimensional differentiable group on a smooth fibre bundle to finite dimensional problems. We give a definition of invariance of a differential form, defined on the total space of a fibre bundle, by the action of a Lie groupoid. Then, we discuss these tools in the case of a Lagrangian classical field theory to describe internal and space-time symmetries simultaneously, in a unified way. With this language, we get some central objects of the theory such as Noether\'s theorems and, in the case of gauge theories, the minimal coupling and Utiyama\'s theorems. Lastly, we briefly discuss the case of symmetries up to contact elements and a total divergence.
13

Grupoides de Lie e o teorema de Noether na formulação lagrangiana da teoria clássica de campos / Lie groupoids and Noether\'s theorem in the Lagrangian formalism of classical field theory

Pêgas, Luiz Henrique Pereira 12 September 2014 (has links)
O objetivo desta tese é oferecer um arcabouço que permita a modelagem de simetrias em fibrados suaves, que possuam um bom comportamento local. Para tanto, usa-se ferramentas de grupoides de Lie e correlatas, com a finalidade de reduzir, quando possível, simetrias dadas pela ação de um grupo diferenciável, possivelmente de dimensão infinita, sobre um fibrado suave, a problemas em dimensão finita. Uma definição de invariância de uma forma diferencial, definida no espaço total de um fibrado suave, sob a ação de um grupoide de Lie, é apresentada e desenvolvida. A seguir, discute-se estas ferramentas no contexto da formulação lagrangiana da teoria clássica de campos com o objetivo de descrever, simultaneamente, simetrias internas e no espaço-tempo, de maneira unificada. Obtém-se então, nesta linguagem, alguns objetos de estudo centrais da teoria, como os teoremas de Noether e, no caso das teorias de calibre, os teoremas de acoplamento mínimo e Utiyama. Por fim, discute-se brevemente o caso de simetrias a menos de elementos de contato e divergências totais. / The aim of this thesis is to provide a framework that allows the modelling of symmetries in smooth fibre bundles which have good local behaviour. For that, we use Lie groupoids and related tools in order to reduce, whenever possible, symmetries given by the action of a possibly infinite dimensional differentiable group on a smooth fibre bundle to finite dimensional problems. We give a definition of invariance of a differential form, defined on the total space of a fibre bundle, by the action of a Lie groupoid. Then, we discuss these tools in the case of a Lagrangian classical field theory to describe internal and space-time symmetries simultaneously, in a unified way. With this language, we get some central objects of the theory such as Noether\'s theorems and, in the case of gauge theories, the minimal coupling and Utiyama\'s theorems. Lastly, we briefly discuss the case of symmetries up to contact elements and a total divergence.
14

N=(2$|$2) Supersymmetric Toda Lattice Hierarchy in N=(2$|$2) Superspace

lechtenf@itp.uni-hannover.de 13 July 2000 (has links)
No description available.
15

Applications of Lie Group on Linearization to Nonlinear Control System

Liu, Sheng-Yi 23 July 2003 (has links)
This paper presents the Lie-Backlund symmetry method to give the equivalence between differential equations and describe the equivalent transformation procedure of nonlinear control systems of partial differential equations. The equivalent linear systems found by solving the infinitesimal generator of one-parameter Lie groups with prolongations and the infinitesimal generator are used to construct the parameters of invertible mapping u. And the equivalence linear form of the nonlinear system is constructed via u. Some necessary conditions for mapping a nonlinear control system of PDE¡¦s to a linear control system of PDE¡¦s are discussed, and application of Lie-Backlund symmetries and invertible mapping u constructed linear time-invariant control system of partial differential equations.
16

Properties of commensurability classes of hyperbolic knot complements

Hoffman, Neil Reardon 16 June 2011 (has links)
This thesis investigates the topology and geometry of hyperbolic knot complements that are commensurable with other knot complements. In chapter 3, we provide an infinite family examples of hyperbolic knot complements commensurable with exactly two other knot complements. In chapter 4, we exhibit an obstruction to knot complements admitting exceptional surgeries in conjunction with hidden symmetries. Finally, in chapter 5, we discuss the role of surfaces embedded in 3-orbifolds as it relates to hidden symmetries. / text
17

Symmetries of Elko and massive vector fields

Lee, Cheng-Yang January 2012 (has links)
This thesis studies the symmetries and phenomenologies of the massive vector fields of indefinite spin with both scalar and spin-one degrees of freedom and Elko. The investigation is conducted by using and extending the quantum field theory formalism developed by Wigner and Weinberg. In particular, we explore the possibility that the W± and Z bosons have an additional scalar degree of freedom and show that Elko is a fermionic dark matter candidate. We show that the massive vector fields of indefinite spin are consistent with Poincaré symmetry and have physically desirable properties that are absent for their pure spin-one counterpart. Using the new vector fields, the decay of the W± and Z bosons to leptons at tree-level are in agreement with the Standard Model (SM) predictions. For higher order scattering amplitudes, the theory has better convergent behaviour than the intermediate vector boson model and the Fermi theory. Elko has the unusual property that it satisfies the Klein-Gordon but not the Dirac equation and has mass dimension one instead of three-half. We show that the Elko fields are local only along a preferred axis and that they violate Lorentz symmetry. Motivated by the results obtained by Ahluwalia and Horvath that the Elko spin-sums are covariant under very special relativity (VSR) transformations, we derive the VSR particle states and quantum fields. We show that the VSR particles can only interact with the SM particles through gravity and massive scalar particles thus making them and hence Elko dark matter candidates.
18

Symmetries in quantum and classical field theories

Schritt, Dimitri January 2013 (has links)
The initial chapter of the thesis provides a review of Weinberg’s formalism for the derivation of quantum fields. The formalism is extended to allow for the derivation of quantum fields with more than one spin degree of freedom. It is conjectured that it may be possible to construct massive bosonic quantum field theories of any desired spin j that are consistent and unitary at all energies without the need for regulator terms by including j + 1 spin degrees of freedom: j, j - 1, down to j - j. The concept is then demonstrated in two subsequent chapters by the derivation of a quantum field with spin one and spin zero degrees of freedom followed the derivation of a quantum field with spin two, spin one, and spin zero degrees of freedom. Both field theories are found to be consistent and unitary at all energies without the need for regulator terms. The final two chapters are on unrelated topics. The penultimate chapter provides an explicit derivation of quantum fields for massless particles of spin one-half. In the final chapter, a derivation of the free-space Proca and Maxwell equations is provided via a consistent identification of the linear combinations of the classical fields of the (1,0) and (0,1) representations of the orthochronous Lorentz group.
19

Observation of the charmless two-body decay B → ′K∗ using data collected by the BABAR experiment

Robertson, Alan Iain January 2013 (has links)
A search for B decays to quasi two-body charmless final states involving a pseudoscalar η′ meson recoiling against a K∗ vector meson is described. This thesis primarily describes the analysis of two of the six possible decay channels, with the other four channels necessarily included as the subdecay modes are combined to give an overall branching fraction measurement. The method of analysis is a multivariate maximum likelihood fit for each subdecay channel. The likelihood curves for both modes are then combined, firstly with two other charged modes to yield an overall charged result, and finally the four charged modes are combined with two neutral modes to give an overall branching fraction and significance for the decay channel B → η′K∗. All results use the full Run 1 to Run 4 datasets, comprising 210.5 fb−1 of data, equivalent to 232 million BB pairs, gathered by the BABAR detector at Stanford Linear Accelerator Center in Menlo Park, California. The measured branching fractions and upper limits at 90% confidence limit (CL) are: B(B+ → η′ηππK∗+ K+π0) < 9.5 × 10−6B(B+ → η′ργK∗+ K+π0) < 22 × 10−6.The four-mode combined fit determined the branching fraction for the decay B+ → η′K∗+: B(B+ → η′K∗+) < 7.9 × 10−6. The six-mode combined fit determined the branching fraction for the decay B → η′K∗: B(B → η′K∗) = (4.1 ± 1.0 ± 0.5) × 10−6 at a significance of 5.6 standard deviations.
20

Simetrias de Lie estocásticas / Stochastics Lie's symmetries

Almeida, Luis Roberto Lucinger de, 1983- 20 August 2018 (has links)
Orientador: Pedro José Catuogno / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-20T05:04:07Z (GMT). No. of bitstreams: 1 Almeida_LuisRobertoLucingerde_D.pdf: 4124910 bytes, checksum: 249249a4a4959e28b63a5f2e7290a5fe (MD5) Previous issue date: 2012 / Resumo: Nesta tese, estudamos equações diferenciais estocásticas, sob o ponto de vista da teoria das simetrias de Lie. Introduzimos o conceito de simetria de Lie estocástica, que consiste em uma ação que mantém invariante as soluções de uma equação diferencial, onde tal ação é estocástica, isto é, dada por um fluxo estocástico. Nosso principal resultado consiste nas equações de Lie para as simetrias estocásticas, permitindo detectar quando um fluxo estocástico é uma simetria estocástica. Além disso, apresentamos uma possível definição de coordenada canônica para as simetrias estocásticas e obtemos condições, assim como no caso clássico, para encontrá-la. Por fim, mostramos como obter, sistematicamente, transformações entre equações estocásticas / Abstract: In this thesis, we study stochastic differential equations, under the point of view of Lie point symmetries. We introduce the concept of stochastic Lie point symmetry, which consists of an action that keeps invariant the solutions of a differential equation, where such action is stochastic, i.e., given by a stochastic flow. Our main result is the Lie's equations for stochastic symmetries, which allows one to detect when a stochastic flow is a stochastic symmetry. Furthermore, we present a possible definition of canonical coordinates for the stochastic symmetries and we obtain conditions, like in the standard case, to find them. At last, we show how to obtain, systematically, transformations between stochastic differential equations / Doutorado / Matematica / Doutor em Matemática

Page generated in 0.0543 seconds