• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Kürzeste konfinale Ketten im Untergruppenverband unendlicher Permutationsgruppen

Schatz, Torsten Ingo. January 2002 (has links) (PDF)
Tübingen, Universiẗat, Diss., 2002.
2

Vertizes einfacher Moduln der symmetrischen Gruppen

Zimmermann, René Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Jena.
3

On unipotent Specht modules of finite general linear groups

Brandt, Marco. January 2004 (has links) (PDF)
Stuttgart, Univ., Diss., 2004.
4

On the length of group laws

Schneider, Jakob 07 December 2019 (has links)
Let C be the class of finite nilpotent, solvable, symmetric, simple or semi-simple groups and n be a positive integer. We discuss the following question on group laws: What is the length of the shortest non-trivial law holding for all finite groups from the class C of order less than or equal to n?:Introduction 0 Essentials from group theory 1 The two main tools 1.1 The commutator lemma 1.2 The extension lemma 2 Nilpotent and solvable groups 2.1 Definitions and basic properties 2.2 Short non-trivial words in the derived series of F_2 2.3 Short non-trivial words in the lower central series of F_2 2.4 Laws for finite nilpotent groups 2.5 Laws for finite solvable groups 3 Semi-simple groups 3.1 Definitions and basic facts 3.2 Laws for the symmetric group S_n 3.3 Laws for simple groups 3.4 Laws for finite linear groups 3.5 Returning to semi-simple groups 4 The final conclusion Index Bibliography / Sei C die Klasse der endlichen nilpotenten, auflösbaren, symmetrischen oder halbeinfachen Gruppen und n eine positive ganze Zahl. We diskutieren die folgende Frage über Gruppengesetze: Was ist die Länge des kürzesten nicht-trivialen Gesetzes, das für alle endlichen Gruppen der Klasse C gilt, welche die Ordnung höchstens n haben?:Introduction 0 Essentials from group theory 1 The two main tools 1.1 The commutator lemma 1.2 The extension lemma 2 Nilpotent and solvable groups 2.1 Definitions and basic properties 2.2 Short non-trivial words in the derived series of F_2 2.3 Short non-trivial words in the lower central series of F_2 2.4 Laws for finite nilpotent groups 2.5 Laws for finite solvable groups 3 Semi-simple groups 3.1 Definitions and basic facts 3.2 Laws for the symmetric group S_n 3.3 Laws for simple groups 3.4 Laws for finite linear groups 3.5 Returning to semi-simple groups 4 The final conclusion Index Bibliography

Page generated in 0.053 seconds