• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 8
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design and implementation of an SPB converter for fault tolerant PMSynRel motor control

Apostolopoulos, Nikolaos January 2015 (has links)
The stacked polyphase bridges (SPB) converter topology is investigated in the presentthesis as a fault-tolerant choice for permanent-magnet synchronous reluctance (PMSyn-Rel) motor control. Integrated motor drive systems are studied as they offer great benefitsfor propulsion applications. Moreover, the importance of a modular topology, like theSPB, for an electric powertrain is discussed. The latter consists of a number of seriesconnected, 3-phase 2-level inverter submodules that supply separate sets of windings ina multi-star motor. The specifications of building a four-board SPB setup are examined,while the challenges of an active voltage balancing controller are analyzed. The designprocess is explained step-by-step and the final printed circuit boards (PCBs) are presented.Furthermore, the significance of low electromagnetic interference design for a converterthat requires high speed communication is highlighted. Finally, the prototype is testedthoroughly and the expected fault-tolerant capabilities are validated on a PMSynRel motor. / I detta examensarbete unders¨ok SPB-omriktartopologin (stacked polyphase bridges converter)i termer av ett feltolerant elektriskt drivsystem f¨or en permamentmagnetassisteradsynkron reluktansmaskin (PMSynRel). SPB-omriktaren best°ar av ett antal seriekoppladetrefasomriktare av tv°aniv°atyp som, var och en, f¨orser effekt till en trefaslindningtillh¨orande en modul¨ar elmaskin av multifastyp. Specifikation, design och konstruktion aven SPB-omriktare med fyra seriekopplade moduler studeras. Designproceduren presenterasi en steg-f¨or-steg-process och de tillverkade kretskorten presenteras utf¨orligt. Kommunikationenmellan de olika kretskorten unders¨oks med s¨arskild tonvikt p°a l°ag elektromagnetiskinterferens vilket ¨ar n¨odv¨andigt om h¨og kommunikationshastighet skall kunnauppn°as. Den f¨ardigst¨allda prototypen har utv¨arderats experimentellt och kapaciteten f¨orfeltolerans har demonstrerats vid drift av en PMSynRel-maskin utrustad med en multifaslindning.
12

Synchronous Reluctance Machine (SynRM) Design

Rajabi Moghaddam, Reza January 2007 (has links)
The Synchronous Reluctance Motor (SynRM) has been studied. A suitable machine vector modelhas been derived. The influence of the major parameters on the motor performance has beentheoretically determined.Due to the complex rotor geometry in the SynRM, a suitable and simple combined theoretical(analytical) and finite element method has been developed to overcome the high number ofinvolved parameters by identifying some classified, meaningful, macroscopic parameters.Reducing the number of parameters effectively was one of the main goals. For this purpose,attempt has been made to find and classify different parameters and variables, based on availableliteratures and studies. Thus a literature study has been conducted to find all useful ideas andconcepts regarding the SynRM. The findings have been used to develop a simple, general, finiteelement aided and fast rotor design procedure. By this method rotor design can be suitablyachieved by related and simplified finite element sensitivity analysis.The procedure have been tested and confirmed. Then it is used to optimize a special rotor for aparticular induction machine (IM) stator. This optimization is mainly focused on the torquemaximization for a certain current. Torque ripple is also minimized to a practically acceptablevalue. The procedure can also be used to optimize the rotor geometry by considering the othermachine performance parameters as constrains.Finally full geometrical parameter sensitivity analysis is also done to investigate the influence ofthe main involved design parameters on the machine performance.Some main characteristics like magnetization inductances, power factor, efficiency, overloadcapacity, iron losses, torque and torque ripple are calculated for the final designs and in differentmachine load conditions.Effects of ribs, air gap length and number of barriers have been investigated by means of suitableFEM based method sensitivity analysis.

Page generated in 0.0722 seconds