• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 8
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 18
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiphase synchronous generators for DC aircraft power systems

Jordan, Steven William January 2013 (has links)
More-electric aircraft have been the focus of considerable development in recent years. Increased utilisation of electrical systems on-board the latest generation of aircraft has seen an increase in fuel efficiency, through improved electrical derivation from the gas turbine engine and weight savings from the replacement of mechanical and hydraulic transmission systems. The advancement of power electronic and DC breaker devices has led to the reconsideration of DC power distribution systems for standalone networks. Aircraft can benefit from this through the reduced transmission losses, improved controllability and intelligent networking.Through the use of a multiphase synchronous generator, connected to a diode rectifier, a standalone DC network capable of providing power with redundancy can be produced. The aim of this research project is to investigate the effects that phase number, connection topology and winding pitch have on the behaviour of an AC generator connected to a passive diode rectifier. This thesis develops the methodology for determining the number of phases and the topology of the generator. Static and dynamic modelling is conducted through the use of computer finite element modelling and circuit simulation. The dynamic circuit simulation model is configured using parameters obtained from experimental data. The experimental test-rig, which is constructed to be reconfigurable in phase number, connection topology and winding pitch, is used to validate the simulation and provide detailed results on the steady-state operation of the generator-rectifier system. Open-circuit faults are introduced to assess the fault tolerance of the system and the effects of the inherent phase redundancy on the generator performance.
2

The Physical Phenomena associated with Stator Winding Insulation Condition as Detected by the Ramped Direct High-Voltage Method

Rux, Lorelynn Mary 08 May 2004 (has links)
Deregulation of the electric utility industry has increased the need to monitor the state of powerplant equipment, such as critical generators and motors, to improve availability and reduce life cycle costs via condition-based maintenance. To achieve these goals, nondestructive condition assessment and diagnostic tests are necessary to evaluate the quality and condition of a machine?s stator winding insulation system. Periodic tests are generally conducted to monitor insulation aging, diagnose problems, or provide some assurance that the winding has a minimum level of electrical strength. The basic principles of insulation testing are presented herein, and the physical mechanisms that affect the current versus voltage response are described. A stator winding insulation model was developed based on this theoretical foundation for use in understanding and analyzing the macroscopic behavior of complex insulation phenomena. A comprehensive, controlled laboratory experiment was conducted on a set of stator coils that were deliberately manufactured with and without insulation defects. Specific defects were chosen to represent the types of insulation problems typically encountered during manufacture or as a result of in-service aging, and included lack of resin cure, loosely-applied insulating tapes, internal conductive contamination, reduced density of the groundwall insulation, and thermal cycling damage. Results are presented from a series of electrical tests conducted on the coil specimens to compare the effectiveness of various test methods in detecting the different insulation problems. The tests included insulation resistance, polarization index, ramped direct voltage, dissipation factor, dielectric spectroscopy, partial discharge, and recovery voltage measurements. Dielectric principles and testing experience obtained during this investigation were applied to a collection of test results obtained by the author from in-service machines during the past ten years. These results and analyses provide a practical illustration of the ability of the ramped direct high-voltage test method to distinguish between normal insulation and that with problems, and to help identify the cause and extent of the deficiencies. While no single diagnostic method is ideally suited to detect all possible stator winding insulation problems, ramped voltage tests are shown to be useful in determining when corrective actions are needed and what the appropriate actions are.
3

Analysis of electrical signatures in synchronous generators characterized by bearing faults

Choi, Jae-Won 15 May 2009 (has links)
Synchronous generators play a vital role in power systems. One of the major mechanical faults in synchronous generators is related to bearings. The popular vibration analysis method has been utilized to detect bearing faults for years. However, bearing health monitoring based on vibration analysis is expensive. One of the reasons is because vibration analysis requires costly vibration sensors and the extra costs associated with its proper installation and maintenance. This limitation prevents continuous bearing condition monitoring, which gives better performance for rolling element bearing fault detection, compared to the periodic monitoring method that is a typical practice for bearing maintenance in industry. Therefore, a cost effective alternative is necessary. In this study, a sensorless bearing fault detection method for synchronous generators is proposed based on the analysis of electrical signatures, and its bearing fault detection capability is demonstrated. Experiments with staged bearing faults are conducted to validate the effectiveness of the proposed fault detection method. First, a generator test bed with an in- situ bearing damage device is designed and built. Next, multiple bearing damage experiments are carried out in two vastly different operating conditions in order to obtain statistically significant results. During each experiment, artificially induced bearing current causes accelerated damage to the front bearing of the generator. This in-situ bearing damage process entirely eliminates the necessity of disassembly and reassembly of the experimental setup that causes armature spectral distortions. The electrical fault indicator is computed based on stator voltage signatures without the knowledge of machine and bearing specific parameters. Experimental results are compared using the electrical indicator and a vibration indicator that is calculated based on measured vibration data. The results indicate that the electrical indicator can be used to analyze health degradation of rolling element bearings in synchronous generators in most instances. Though the vibration indicator enables early bearing fault detection, it is found that the electrical fault indicator is also capable of detecting bearing faults well before catastrophic bearing failure.
4

Sensorless control of AC machines for integrated starter generator application

Hu, Jiangang, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 133-137).
5

Modeling and Control of a Synchronous Generator With Electronic Load

Jadric, Ivan 25 March 1998 (has links)
Design and analysis of a system consisting of a variable-speed synchronous generator that supplies an active dc load (inverter) through a three-phase diode rectifier requires adequate modeling in both time and frequency domain. In particular, the system's control-loops, responsible for stability and proper impedance matching between generator and load, are difficult to design without an accurate small-signal model. A particularity of the described system is strong non-ideal operation of the diode rectifier, a consequence of the large value of generator's synchronous impedance. This non-ideal behavior influences both steady state and transient performance. This thesis presents a new, average model of the system. The average model accounts, in a detailed manner, for dynamics of generator and load, and for effects of the non-ideal operation of diode rectifier. The model is non-linear, but time continuous, and can be used for large- and small-signal analysis. The developed model was verified on a 150 kW generator set with inverter output, whose dc-link voltage control-loop design was successfully carried out based on the average model. / Master of Science
6

Fast-response rotating brushless exciters for improved stability of synchronous generators

Nøland, Jonas Kristiansen January 2016 (has links)
The Norwegian Network Code FIKS from the Norwegian Transmission System Operator (TSO) Statnett, states that synchronous generators ≥ 25 MVA must have a static excitation system. It also includes requirements on the step time response and the available field winding ceiling voltage of the excitation system. An improved brushless excitation system is in operation in some pilot power plants. A rotating thyristor bridge is controlled via Bluetooth. The step time response is as fast as conventional static excitation systems. However, a ceiling voltage factor of 2 requires the thyristor bridge to operate at firing angles about 60 degrees. High torque pulsations, low power factor and low utilization of the exciter is the end result. New power electronic interfaces on the shaft results in a betterutilization of the designed exciter and improves the mechanical performance as well as the controllability of the generator field winding. Permanent magnet rotating exciters increase the field forcing strength of the synchronous generator, yielding improved transient stability (Fault Ride-Through req.). Brushless exciters also reduces regular maintenance of the generator. The thesis includes experiments on a state of the art synchronous generator test setup including constructed PM exciter and different power electronic solutions. Some investigations has been done on industrial power plants as well.
7

Demagnetization and Fault Simulations of Permanent Magnet Generators

Sjökvist, Stefan January 2016 (has links)
Permanent magnets are today widely used in electrical machines of all sorts. With their increase in popularity, the amount of research has increased as well. In the wind power project at Uppsala University permanent magnet synchronous generators have been studied for over a decade. However, a tool for studying demagnetization has not been available. This Ph.D. thesis covers the development of a simulation model in a commercial finite element method software capable of studying demagnetization. Further, the model is also capable of simulating the connected electrical circuit of the generator. The simulation model has continuously been developed throughout the project. The simulation model showed good agreement compared to experiment, see paper IV, and has in paper III and V successfully been utilized in case studies. The main focus of these case studies has been different types of short-circuit faults in the electrical system of the generator, at normal or at an elevated temperature. Paper I includes a case study with the latest version of the model capable of handling multiple short-circuits events, which was not possible in earlier versions of the simulation model. The influence of the electrical system on the working point ripple of the permanent magnets was evaluated in paper II. In paper III and VI, an evaluation study of the possibility of creating a generator with an interchangeable rotor is presented.  A Neodymium-Iron-Boron (Nd-Fe-B) rotor was exchanged for a ferrite rotor with the electrical properties almost maintained.
8

Impact assessment of large-scale penetration of permanent magnet synchronous generators on power quality

Ntsadu, Ntlahla January 2017 (has links)
Wind power generation has gained a large share in the renewable energy market over the past few years. This study investigates the impact of large scale penetration of permanent magnet synchronous generator (PMSG) based wind turbines on power quality of the grid. PMSGs are attractive due to the absence of a gearbox in the drive-train, which results in lower maintenance costs and higher reliability. Moreover, the advancements in power electronics have facilitated PMSGs to generate optimal power at varying wind speed conditions. This is achieved through the use of maximum power point tracking algorithms. The drawbacks of PMSG-based wind energy systems are that they inject harmonics into the network and cause flicker as well as other power quality issues. Despite these disadvantages, the grid code requires that PMSGs stay connected to the grid even under grid disturbances. This is because the reactive power control capability of PMSG-based wind energy systems can actually assist with voltage support. It will be shown in this study that disconnecting large scale PMSGs based wind turbines during grid disturbances has a detrimental effect on transient stability of the grid. This study will show that PMSG-based wind energy systems improve transient stability and assist in voltage support through reactive power control. Moreover, the impacts of large scale PMSG based wind turbines on power quality of the grid can be reduced by various means, which are also addressed in the study.
9

Design of detailed models for use in fast aeroelastic simulations of permanent-magnet direct-drive wind turbines

Ochs, David S. January 1900 (has links)
Master of Science / Department of Electrical and Computer Engineering / Ruth Douglas Miller / This thesis presents the design of two models for permanent-magnet direct-drive wind turbines. The models are of a 10 kW and a 5 MW wind turbine, which are representative of residential scale and commercial scale turbines respectively. The models include aerodynamic and mechanical simulations through the FAST software, as well as concurrent electrical simulations through the SimPowerSystems toolbox for MATLAB/Simulink. The aim is to provide wind turbine designers and researchers with a comprehensive simulation tool that they can use to design and test many different aspects of a wind turbine. The particular novelty of these models is their high level of detail in electromechanical simulations. For each model, a generator speed controller was designed in a reference frame attached to the generator’s rotor, and was executed with a 3-phase active rectifier using space-vector pulse-width modulation. Also for each model, active and reactive power controllers were designed in a reference frame synchronous with the grid, and were executed with a 3-phase inverter using space-vector pulse-width modulation. Additionally, a blade pitch controller was designed for the 5 MW model. Validation of the models was carried out in the MATLAB/Simulink environment with satisfactory results.
10

Modelagem e estimação de parâmetros de geradores síncronos via análise de sensibilidade de trajetória / Modeling and parameter estimation of synchronous generators per trajectory sensitivity analysis

Landgraf, Taylon Gomes 14 November 2014 (has links)
Neste trabalho, investigamos um algoritmo para estimação dos parâmetros de geradores síncronos baseado em análise de sensibilidade de trajetórias. Os parâmetros são estimados através da resolução de um problema de otimização não-linear de mínimos quadrados. Medidas são comparadas com as soluções obtidas dos modelos dinâmicos do gerador e o algoritmo busca minimizar a diferença entre as medidas e a saída do modelo matemático. As medidas foram obtidas de forma artificial por intermédios de simulações computacionais, admitindo-se não somente as dinâmicas transitórias da máquina, mas também considerando as dinâmicas sub-transitórias. O algoritmo proposto é adequado para medidas acessíveis em campo e permite estimar os parâmetros a partir de medidas de perturbações do sistema sem a necessidade da desconexão da máquina do sistema. A principal contribuição deste trabalho é a proposição de uma nova modelagem empregada para estimar os parâmetros do gerador síncrono. Para isto, propõe-se um modelo simplificado, modificado do modelo de dois eixos do gerador, que utiliza a corrente de campo do gerador como uma das entradas. Este modelo é constituído por um conjunto de equações algébrico-diferenciais (EADs) que contém uma equação algébrica de balanço de corrente. Esta equação elimina a necessidade de medidas de variáveis de difícil acesso. O algoritmo proposto foi testado com dados obtidos de simulações dinâmicas realizadas a partir de um sistema teste com resultados satisfatórios. Os resultados obtidos são analisados frente a resultados obtidos também para o modelo de dois eixos utilizando a tensão de campo como uma entrada. Através destes resultados é possível observar a possibilidade de sua utilização em aplicações reais. / In this work, we investigate an algorithm for estimating parameters of synchronous generators based on trajectories sensitivity analysis. The parameters are estimated by solving a nonlinear optimization problem of least squares. Measurements are compared with the solutions obtained from the dynamic model of the generator and the algorithm seeks to minimize the difference between the measurements and the output of the mathematical model. Measurements were obtained artificially by means of simulations, assuming not only the transient dynamics of the machine, but also considering the subtransient dynamics. The proposed algorithm is suitable for accessible measurements in the field and allows the estimation of parameters from measurements of system disturbances, without the necessity of disconnecting the machine from the system. The main contribution of this work is to propose a new generator model to estimate the parameters of the synchronous generator. To this end, a simplified model is proposed. This model is a modification of the two-axis model of the generator, which uses the generator field current as an input of the model. This model consists of a set of differential-algebraic equations (DAEs) containing an algebraic equation of balance of current. This equation eliminates the need of measuring variables that are difficult to access. The proposed algorithm has been tested with data obtained from dynamic simulations conducted from a test system with satisfactory results. The results has been analysed against the results of the two-axis model using the generator field voltage as an input of the model. These results indicate the possibility of application in real machines.

Page generated in 0.0945 seconds