• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 28
  • 27
  • 18
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 141
  • 141
  • 64
  • 56
  • 36
  • 31
  • 29
  • 21
  • 21
  • 21
  • 21
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control of a Synchronous Machine

Olofsson, Jens January 2010 (has links)
<p>The VAWT project at Uppsala University has successfully managed to develop a vertical axis wind turbine (VAWT). The VAWT has many benefits compared to the Horizontal axis wind turbines (HAWT) which are the most common wind turbine design today. One of the many advantages with the VAWT is that it allows the generator to be located on the ground level. That reduces the required tower strength. The wind turbine is not self starting, i.e. the turbine needs a certain speed before the wind can force the turbine to revolve. The wind turbine is therefore in need of special start procedure. During the start, power electronics is used to operate the generator as a motor. Today Hall latches are located in the air gap of the generator which provides the signals that govern the power electronics. However, there is a demand to have a start that does not require Hall latches. Such controller would increase the reliability of the starter system. The design of the wind turbine could be even more simplified. Hence, the diploma work treats a programmed microcontroller to control the start-up without using any sensors at all. A hub motor was obtained for laboratory work, a driver and an inverter were constructed to drive the motor using a microcontroller. The finished start-up program has the ability to start the hub motor both sensorless and using Hall sensors. The microcontroller controls the motor by measuring the phase voltages of the motor. This information is used to decide which phases of the motor the electric current should go through. The current to the motor is limited using pulse width modulation strategy (PWM). Current limitation is necessary to protect the power electronics and limit the torque during the start. The result of start-ups using both Hall sensor and sensorless showed that the two start strategies are able to accelerate the rotor at the same rate. However, the start-ups using Hall sensors reached a higher top speed than the sensorless starts. However, the wind turbine is not in need of a higher speed than what the sensorless start was able to reach. Thus, the sensorless start is considered to be as good as the start using Hall sensors.</p>
2

Control of a Synchronous Machine

Olofsson, Jens January 2010 (has links)
The VAWT project at Uppsala University has successfully managed to develop a vertical axis wind turbine (VAWT). The VAWT has many benefits compared to the Horizontal axis wind turbines (HAWT) which are the most common wind turbine design today. One of the many advantages with the VAWT is that it allows the generator to be located on the ground level. That reduces the required tower strength. The wind turbine is not self starting, i.e. the turbine needs a certain speed before the wind can force the turbine to revolve. The wind turbine is therefore in need of special start procedure. During the start, power electronics is used to operate the generator as a motor. Today Hall latches are located in the air gap of the generator which provides the signals that govern the power electronics. However, there is a demand to have a start that does not require Hall latches. Such controller would increase the reliability of the starter system. The design of the wind turbine could be even more simplified. Hence, the diploma work treats a programmed microcontroller to control the start-up without using any sensors at all. A hub motor was obtained for laboratory work, a driver and an inverter were constructed to drive the motor using a microcontroller. The finished start-up program has the ability to start the hub motor both sensorless and using Hall sensors. The microcontroller controls the motor by measuring the phase voltages of the motor. This information is used to decide which phases of the motor the electric current should go through. The current to the motor is limited using pulse width modulation strategy (PWM). Current limitation is necessary to protect the power electronics and limit the torque during the start. The result of start-ups using both Hall sensor and sensorless showed that the two start strategies are able to accelerate the rotor at the same rate. However, the start-ups using Hall sensors reached a higher top speed than the sensorless starts. However, the wind turbine is not in need of a higher speed than what the sensorless start was able to reach. Thus, the sensorless start is considered to be as good as the start using Hall sensors.
3

Assessing Kalman filter in the identification of synchronous machine stability parameters

Borrero, Antonio J. January 1983 (has links)
No description available.
4

Design, Analysis and Experimental Evaluation of a Virtual Synchronous Machine Based Control Scheme for STATCOM Applications

Li, Chi 23 September 2015 (has links)
Because renewable energy sources are environment-friendly and inexhaustible, more and more renewable energy power plants have been integrated into power grids worldwide. To compensate for their inherent variability, STATCOMs are typically installed at the point of common coupling (PCC) to help their operation by regulating the PCC voltage. However under different contingencies, PCC voltage fluctuations in magnitude and frequency may impede the STATCOM from tracking the grid frequency correctly, hence worsening its overall compensation performance, and putting at risk the operation of the power plant. Further, the virtual synchronous machine (VSM) concept has recently been introduced to control grid-connected inverters emulating the behavior of rotating synchronous machines, in an effort to eliminate the shortcomings of conventional d-q frame phase-locked loops (PLL). In this dissertation, the VSM concept is extended by developing a STATCOM controller with it, which then behaves like a fully-adjustable synchronous condenser, including the adjustment of its "virtual" inertia and impedance. An average model in two D-Q frames is proposed to analyze the inherent dynamics of the VSM-based STATCOM controller with insight into impacts from the virtual parameters and a design guideline is then formulated. The proposed controller is compared against existent d-q frame STATCOM control strategies, evincing how the VSM-based approach guarantees an improved voltage regulation performance at the PCC by adjusting the phase of its compensating current during frequency fluctuations, in both simulation and experiment. Secondly, the dynamics of the VSM-based STATCOM controller in large signal sense is studied, especially its capability to ride through faults. Analysis is carried out with phasors to obtain a fundamental understanding at first and followed by state space equations to predict the transients analytically, which is validated by matching both simulation and experiment. The effects of two outer loops are also reviewed and some possible solutions are suggested and evaluated. Moreover, the relationship between the virtual inertia and the actual inertia is established and the dc capacitor sizing is discussed in a possibly more economical way. The start-up process of a VSM-based STATCOM is presented to implement a practical prototype as well. / Master of Science
5

Design, Analysis, and Driver Control of Disc-type Permanent Magnet Linear Synchronous Machine

Chen, Jyh-Wei 28 August 2001 (has links)
The design, analysis, and control of Disc-type Linear Permanent Magnet Synchronous Machines are presented in this dissertation. The machine is designed in order to have the features of high power density, high efficiency, direct drive without extra transmission device, simple mechanical structure, and wide operating speed range for the electric vehicle applications. The Feasible Triangle Technique for permanent magnet synchronous machine design is employed to increase torque density and reduce torque ripple. Magnetic theory and the finite element method are involved to establish machine mathematical model to simulate and analyze the proposed machine. The coupling field between rotor and stator can be analyzed from flux distribution by using three-dimensional finite element method. The numerical simulation and experimental results are used to verify the machine model and the operational characteristics of machine. The dissertation provides the procedures for design, analysis, and control of the proposed machine.
6

Thermal modelling of a high speed permanent magnet synchronous machine / Andries J. Grobler

Grobler, Andries Johannes January 2011 (has links)
Thermal modelling is of great importance in all electric machines but especially in permanent magnet synchronous machines (PMSMs). The thermally fragile permanent magnets (PMs) can more easily be demagnetized at high temperatures. When high speed machines are considered, heat extraction surfaces are small due to the higher energy density. This thesis focuses on the thermal modelling of a high speed slotless PMSM using analytical techniques. From literature it is clear that analytical distributed models have not reached its full potential in thermal modelling of electric machines. Thermal experiments on high speed electric machine, including rotor PM temperature measurements are not commonly found in literature. The thermal behaviour of each component of the machine is influenced by the overall temperature distribution. The widely used lumped parameter (LP) cylindrical component model derived by Mellor et al. is used to derive a LP model of the entire machine. A two dimensional (2-D) analytical distributed model is derived for the rotor PM using the separation of variables method. Three of the boundaries are assumed to be of the convection type and the fourth of constant heat flow type. Different convection coefficients are assumed to exist in the radial and axial directions. The distributed model is verified using COMSOL R and good correlation is shown. The distributed model is used to determine the temperature distribution in the PM and the convection heat flow in the axial direction. Loss calculation is an integral part of thermal modelling. Temperature changes in an electric machine is due to the interaction between the heat generation (losses) and heat removal. The losses found in a high speed slotless PMSM are investigated. A 2-D analytical magnetic model is used to determine the stator lamination loss as well as the stator winding eddy current loss. A simple LP model is derived for the rotor eddy current loss. Due to the relatively large resistivity of the shielding cylinder and PM material, the rotor eddy current loss is a significant part of the total machine loss. The tangential current width is determined empirically in this thesis but a 3-D distributed model which includes end space effects and skin depth could also be used. A large part of thermal modelling is empirically based. The convection and interface resistances are determined through a set of experiments in this thesis. The measured and calculated convection coefficients correlated well for both forced and natural convection cooling. A large temperature increase found during the no-load test can be attributed to large bearing loss, possibly due to axial loading. The LP model is modified to include the phenomena found during the experiments. The thermal model is used to predict the temperatures of a high speed PMSM at rated load and speed. Although the PM is not heated above the Curie temperature, demagnetization is still possible. According to the model, the machine will not be able to operate at full load and speed for extensive periods due to mechanical stress limits being exceeded. The temperature distribution of the PM could not be verified since the temperatures in the air gap and end space could not be measured. It is expected that axial heat flow will be larger than what is currently predicted by the distributed model. A sensitivity analysis was used to investigate the influence of the thermal resistances and losses on the machine temperatures. Methods for reducing the rotor eddy current loss and interface resistances are also discussed. The first contribution of this thesis is the 2-D analytical distributed model for the PM of a high speed PMSM. Hot spots and 2-D heat flow can be analysed using this model. Combining the LP and 2-D analytical distributed models is another contribution. This combines the simplicity and fast solution times of the LP model with the 2-D thermal distribution of the analytical distributed model. The systematic experimental investigation of the thermal behaviour of a high speed PMSM is a further contribution. / Thesis (Ph.D. (Electrical Engineering))--North-West University, Potchefstroom Campus, 2011.
7

Thermal modelling of a high speed permanent magnet synchronous machine / Andries J. Grobler

Grobler, Andries Johannes January 2011 (has links)
Thermal modelling is of great importance in all electric machines but especially in permanent magnet synchronous machines (PMSMs). The thermally fragile permanent magnets (PMs) can more easily be demagnetized at high temperatures. When high speed machines are considered, heat extraction surfaces are small due to the higher energy density. This thesis focuses on the thermal modelling of a high speed slotless PMSM using analytical techniques. From literature it is clear that analytical distributed models have not reached its full potential in thermal modelling of electric machines. Thermal experiments on high speed electric machine, including rotor PM temperature measurements are not commonly found in literature. The thermal behaviour of each component of the machine is influenced by the overall temperature distribution. The widely used lumped parameter (LP) cylindrical component model derived by Mellor et al. is used to derive a LP model of the entire machine. A two dimensional (2-D) analytical distributed model is derived for the rotor PM using the separation of variables method. Three of the boundaries are assumed to be of the convection type and the fourth of constant heat flow type. Different convection coefficients are assumed to exist in the radial and axial directions. The distributed model is verified using COMSOL R and good correlation is shown. The distributed model is used to determine the temperature distribution in the PM and the convection heat flow in the axial direction. Loss calculation is an integral part of thermal modelling. Temperature changes in an electric machine is due to the interaction between the heat generation (losses) and heat removal. The losses found in a high speed slotless PMSM are investigated. A 2-D analytical magnetic model is used to determine the stator lamination loss as well as the stator winding eddy current loss. A simple LP model is derived for the rotor eddy current loss. Due to the relatively large resistivity of the shielding cylinder and PM material, the rotor eddy current loss is a significant part of the total machine loss. The tangential current width is determined empirically in this thesis but a 3-D distributed model which includes end space effects and skin depth could also be used. A large part of thermal modelling is empirically based. The convection and interface resistances are determined through a set of experiments in this thesis. The measured and calculated convection coefficients correlated well for both forced and natural convection cooling. A large temperature increase found during the no-load test can be attributed to large bearing loss, possibly due to axial loading. The LP model is modified to include the phenomena found during the experiments. The thermal model is used to predict the temperatures of a high speed PMSM at rated load and speed. Although the PM is not heated above the Curie temperature, demagnetization is still possible. According to the model, the machine will not be able to operate at full load and speed for extensive periods due to mechanical stress limits being exceeded. The temperature distribution of the PM could not be verified since the temperatures in the air gap and end space could not be measured. It is expected that axial heat flow will be larger than what is currently predicted by the distributed model. A sensitivity analysis was used to investigate the influence of the thermal resistances and losses on the machine temperatures. Methods for reducing the rotor eddy current loss and interface resistances are also discussed. The first contribution of this thesis is the 2-D analytical distributed model for the PM of a high speed PMSM. Hot spots and 2-D heat flow can be analysed using this model. Combining the LP and 2-D analytical distributed models is another contribution. This combines the simplicity and fast solution times of the LP model with the 2-D thermal distribution of the analytical distributed model. The systematic experimental investigation of the thermal behaviour of a high speed PMSM is a further contribution. / Thesis (Ph.D. (Electrical Engineering))--North-West University, Potchefstroom Campus, 2011.
8

Non-invasive detection of air gap eccentricity in synchronous machines using current signature analysis

Thirumarai Chelvan, Ilamparithi 13 December 2012 (has links)
Air gap eccentricity fault is one of the major faults that afflict the life and performance of rotating machines. Eccentricity fault, in the worst case, causes a stator rotor rub. Thus, a condition monitoring scheme to identify eccentricity fault at its initial stage is necessary. The most widely practised air gap monitoring schemes for synchronous machines are expensive and invasive sensors based. This work has focussed on developing an inexpensive, non-invasive, air gap monitoring technique especially for salient pole synchronous machines. Motor current signature analysis has been mostly preferred for the above mentioned purpose. By monitoring the frequency spectrum of the machine’s current, faulty condition can be isolated provided the fault specific frequency components are known beforehand. The research work, therefore, has developed a specific permeance function using binomial series for salient pole machines that can be used to identify eccentricity specific harmonic components in the line current spectrum. Then by performing the magneto-motive force – specific permeance analysis the characteristic frequency components have been predicted. In order to validate the prediction as well as to identify a trend in the variation of these harmonic components with changing levels of eccentricity, mathematical models of a three phase reluctance synchronous machine and a three phase salient pole synchronous machine based on modified winding function approach have been developed. The models have been made to incorporate static, dynamic and mixed eccentricity conditions of varying severity. Also time stepped finite element based models have been simulated in Maxwell-2D to verify the theoretical predictions. With the help of eccentrically cut bushings, experiments were then conducted in the laboratory to corroborate the proposed eccentricity detection scheme. It has been observed that non-idealities such as supply time harmonics, machine constructional asymmetry, supply voltage unbalance etc. negatively impact the diagnostic technique. Consequently, a residual estimation based fault detection scheme has been implemented successfully to distinguish eccentricity fault from healthy condition. Moreover, detection logic have been put forth to discriminate the type of eccentricity and to estimate the severity of the fault. / Graduate
9

Development of a converter-fed reluctance synchronous generator wind turbine controller

Du Plooy, Jon-Pierre 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: The growing contribution of wind energy to utility grids has sparked interest in small-scale wind turbines and thus a growing global cumulative installed capacity. Small-scale wind turbines find use in the saving of cost of electricity or for the carbon footprint reduction of small farms and small-holdings, as well as the electrification of rural communities. A goal of any wind turbine is to produce power at as low of a cost per unit energy as possible. Thus, a generator with a high power density and high efficiency is essential. The reluctance synchronous machine (RSM) is a strong competitor in this regard. Additionally, the RSM is a robust brushless topology that has good properties of manufacturability. However, studies published on the use of RSMs as generators in wind turbines is limited. This study serves to explore the performance and controllability of an RSM as a generator in a small-scale 9:2 kW wind turbine. For maximum power capture, it is desirable to have a wind turbine vary its rotor speed. However, there is a limit to the power that the generator may produce and so techniques are employed to reduce the captured power when operating above the rated wind speed. A turbine controller is developed that employs a speed-controlled maximum power point tracking (MPPT) technique for maximum power capture and soft-stalling of the blades to reduce power capture at excessive wind speeds. The RSM is modelled along with a turbine simulation model, complete with a wind source generator, to evaluate the performance of the system. Speed-controlled MPPT is known to sacrifice torque smoothness for fast tracking performance. To mitigate these harsh effects on the drivetrain, the speed reference of the generator is filtered to provide an average response to the optimal speed reference. This is shown to reduce the frequent and excessive speed, torque, and electrical power variations though optimal performance is not possible. However, any reduction on drivetrain fatigue that will maximise operation time of the turbine is considered an important gain. The RSM proves to have qualities that are applicable to wind turbine applications with its high efficiency, good manufacturability properties, low cost, and high robustness. Its higher power density over induction machines is also favourable though power electronics are required for optimal operation of the machine. / AFRIKAANSE OPSOMMING: Die groeiende bydrae van wind energie te nut roosters het aanleiding gegee tot belangstelling in kleinskaalse wind turbines en dus 'n groeiende w^ereldwye kumulatiewe geïnstalleerde kapasiteit. Kleinskaalse wind turbines vind ook gebruik in die besparing van koste van elektrisiteit, of vir die koolstofvoetspoor vermindering van klein plase en klein-hoewes, sowel as die elektrifisering van landelike gemeenskappe. Een van die doelwitte van enige wind turbine is om krag te produseer teen so laag van 'n koste per eenheid energie as moontlik. Dus, 'n kragopwekker met 'n hoë krag digtheid en hoë doeltreffendheid is noodsaaklik. Die reluktansie sinchroonmajien (RSM) is 'n sterk mededinger in hierdie verband. Daarbenewens is die RSM 'n robuuste borsellose topologie wat goeie eienskappe van vervaardigbaarheid het. Maar studies oor die gebruik van RSMs as kragopwekkers gepubliseer in die wind turbines is beperk. Hierdie studie dien om die prestasie te ondersoek en die beheerbaarheid van 'n RSM as 'n a kragopwekker in 'n klein-skaal 9:2 kW wind turbine te verken. Vir maksimum krag vang is dit wenslik dat die wind turbine sy rotor spoed wissel. Maar daar is 'n beperking op die krag wat die kragopwekker kan produseer en daarom work tegnieke gebruik om die gevange krag te verminder wanneer daar bo die gegradeerde wind spoed gewerk word. 'n Turbine beheerder word ontwikkel wat werk om 'n spoedbeheer maksimum kragpunt dop tegniek vir maksimum krag vang en die sagtestaking van die lemme krag vang deur oormatige wind spoed te verminder. Die RSM is gemodeleer saam met 'n turbine simulasie model kompleet met 'n wind bron kragopwekker om die prestasie van die stelsel te evalueer. Spoedbeheerde maksimum kragpunt dop is bekend om wringkrag gladheid vir 'n vinnige dop prestasie te offer. Om hierdie harde gevolge op die kragoorbringstelsel te versag is die spoed verwysing van die kragopwekker gefiltreer om 'n gemiddelde reaksie op die optimale spoed verwysing te verskaf. Dit word getoon om gereelde en hoë spoed, wringkrag en elektriese krag variases te verminder al is optimale prestasie nie moontlik nie. Enige afname van aandrystelsel moegheid wat operasie tyd van die turbine maksimeer word beskou as 'n belangrike gewin. Die RSM bewys eienskappe wat van toepassing is op die turbine aansoeke na aanleiding met sy hoë doeltreffendheid, goeie vervaardigbaarheid eienskappe, lae koste end ' hoë robuustheid. Sy hoër krag digtheid oor induksiemasjien is ook gunstig al is drywingselektronika nodig vir optimale werking van die masjien.
10

Analýza tepelných vlastností synchronního stroje / Analysis of thermal properties of the synchronous machine

Paszek, Michal January 2012 (has links)
In this Master´s thesis will be performed an analysis of thermal properties of synchronous machines in the program Ansys Workbench on a simplified model of synchronous traction motor. In the first section will be performed thermal analysis without cooling followed by analysis of air flow and finally thermal analysis with cooling for fan speed 1500 min-1 and 3000 min-1. The second section will describe the principle, construction and losses on the synchronous machine. The third chapter will describe concepts such as heat, temperature, heat transfer, types of the heat transfer, specific heat capacity, emisivity and thermal conductivity. The fourth chapter will introduce the program Ansys Workbench, finite element method and Ansys CFX. In the fifth chapter will be described how to perform thermal analysis on the created model of motor. The sixth chapter will describe how to analyze the air flow of the created model of motor. The flow analysis will be performed for fan speed 1500 min-1 and 3000 min-1. In the seventh chapter will be compared the results of the air flow and pressure field in the motor model. In the eighth chapter will be performed a thermal analyzis on the created motor model with cooling for fan speed 1500 min-1 and 3000 min-1. The nineth chapter will compare the results of temperatures and heat fluxes obtained from the thermal analysis witnout cooling, with cooling for fan speed 1500 min-1 and 3000 min-1 for full losses, half losses of continous running, and full losses of interrupt running for 9000 seconds (2 hours 30 minutes).

Page generated in 0.0741 seconds