Spelling suggestions: "subject:"syntetisk biologia"" "subject:"syntetisk biologic""
1 |
Metabolically engineer the cyanobacterium Synechocystis sp. PCC 6803 to produce 1,2-propanediolStjernfeldt, Hanna January 2022 (has links)
Climate change and its effects on our society is a steadily growing problem. In 2010, the industry sector accounted for more than 30% of the global greenhouse gas emissions. The chemical industry is one of the industrial subsectors responsible for the highest emissions of greenhouse gas. To reach the climate goals it is therefore urgent to find more sustainable options for production of chemicals in general. Synthetic biology and microbial cell factories are growing fields that have received much attention for inferring promising sustainable alternative production routes for various compounds. When it comes to microbial cell factories, cyanobacteria infer many advantages over heterotrophs. Cyanobacteria can for instance convert atmospheric CO2 into valuable compounds through photosynthesis using the light reaction and the Calvin-Benson cycle. In the present work, the freshwater cyanobacterium Synechocystis sp. PCC 6803 is metabolically engineered to produce 1,2-propanediol; an important chemical feedstock for which there is a great interest in finding a sustainable production route as an alternative to the current petrochemical one. Seven different constructs are designed for introduction and expression of a three-step heterologous metabolic pathway for 1,2-propanediol production. Two strains of Synechocystis are successfully engineered, with the heterologous pathway chromosomally integrated at the Neutral Site I through homologous recombination with an integrative plasmid targeting this genomic site. One of the three heterologous genes (mgsA) of the pathway was successfully translated as shown in a Western immunoblot. In a SDS-PAGE a band of 40 kDa was detected, corresponding to the size of both the sADH and YqhD enzymes.
|
2 |
Toward prototyping metabolic pathways in cyanobacteria using cell extractsBensabra, Amina January 2022 (has links)
Cyanobakterier är intressanta mikroorganismer för produktion av biobränslen från solljus, vatten och atmosfärisk koldioxid och anses därför vara potentiella mikrobiella cellfabriker. Men på grund av långsam tillväxt och låg produktion är genteknologi processen intensiv och tidskrävande för cyanobakterier. En alternativ metod till prototypteknik för metabola vägar är att använda cellfri metabolisk teknik där cellysat av överuttryckta enzymer används. I detta projekt försökte vi utveckla en metod för cellfri metabolisk ingenjörsteknik för cyanobakterien Synechocystis PCC 6803 med hjälp av den övre mevalonatvägen som exempelreaktionsväg. Vi började med att utveckla tre fluorescensbaserade metoder för att detektera proteinöveruttryck med hjälp av de tre enzymerna från mevalonatreaktionsvägen. Dessa metoder använde fusering av YFP-proteinet till målproteinet, en delad GFP-reporterprotein eller translationskoppling. Ett av de överuttryckta enzymerna verkade vara giftigt för Synechocystis-celler så flera inducerbara promotorer användes för att försöka uttrycka enzymet. Den högst uttryckande konstruktionen för varje gen valdes ut och proteiner extraherades och blandades i en cellfri metabolisk ingenjörsreaktion. Även om inget mevalonat kunde detekteras med hjälp av gaskromatografi i detta projekt, berodde detta sannolikt på otillräckligt högt proteinöveruttryck av mevalonatgenerna. / Cyanobacteria are desirable microorganisms for the production of biofuels from sunlight, water and atmospheric carbon dioxide, and are therefore considered potential microbial cell factories. But due to slow growth rate and low production rates, the engineering processes for bioproduction is labour intensive and time consuming. An alternative method to prototype metabolic pathway engineering is to use cell-free metabolic engineering, where cell lysates of enriched enzymes are used. In this project, we attempted to develop a method for cell-free metabolic engineering for the cyanobacterium Synechocystis PCC 6803 using the upper mevalonate pathway as an example pathway. We started by developing three fluorescence-based methods for detecting protein overexpression using the three enzymes from the mevalonate pathway. These methods used YFP fusion to target proteins, a split GFP reporter tag or translation coupling. One of the overexpressed enzymes appeared to be toxic to Synechocystis cells so several inducible promoters were used to try and express the enzyme. The highest expressing construct for each gene was selected and proteins were extracted and mixed in a cell free metabolic engineering reaction. Although no mevalonate could be detected using gas chromatography in this project, this was likely due to insufficiently high protein overexpression of the mevalonate pathway genes.
|
3 |
Modeling the intronic regulation of Alternative Splicing using Deep Convolutional Neural Nets / En metod baserad på djupa neurala nätverk för att modellera regleringen av Alternativ SplicingLinder, Johannes January 2015 (has links)
This paper investigates the use of deep Convolutional Neural Networks for modeling the intronic regulation of Alternative Splicing on the basis of DNA sequence. By training the CNN on massively parallel synthetic DNA libraries of Alternative 5'-splicing and Alternatively Skipped exon events, the model is capable of predicting the relative abundance of alternatively spliced mRNA isoforms on held-out library data to a very high accuracy (R2 = 0.77 for Alt. 5'-splicing). Furthermore, the CNN is shown to generalize alternative splicing across cell lines efficiently. The Convolutional Neural Net is tested against a Logistic regression model and the results show that while prediction accuracy on the synthetic library is notably higher compared to the LR model, the CNN is worse at generalizing to new intronic contexts. Tests on non-synthetic human SNP genes suggest the CNN is dependent on the relative position of the intronic region it was trained for, a problem which is alleviated with LR. The increased library prediction accuracy of the CNN compared to Logistic regression is concluded to come from the non-linearity introduced by the deep layer architecture. It adds the capacity to model complex regulatory interactions and combinatorial RBP effects which studies have shown largely affect alternative splicing. However, the architecture makes interpreting the CNN hard, as the regulatory interactions are encoded deep within the layers. Nevertheless, high-performance modeling of alternative splicing using CNNs may still prove useful in numerous Synthetic biology applications, for example to model differentially spliced genes as is done in this paper. / Den här uppsatsen undersöker hur djupa neurala nätverk baserade på faltning ("Convolutions") kan användas för att modellera den introniska regleringen av Alternativ Splicing med endast DNA-sekvensen som indata. Nätverket tränas på ett massivt parallelt bibliotek av syntetiskt DNA innehållandes Alternativa Splicing-event där delar av de introniska regionerna har randomiserats. Uppsatsen visar att nätverksarkitekturen kan förutspå den relativa mängden alternativt splicat RNA till en mycket hög noggrannhet inom det syntetiska biblioteket. Modellen generaliserar även alternativ splicing mellan mänskliga celltyper väl. Hursomhelst, tester på icke-syntetiska mänskliga gener med SNP-mutationer visar att nätverkets prestanda försämras när den introniska region som används som indata flyttas i jämförelse till den relativa position som modellen tränats på. Uppsatsen jämför modellen med Logistic regression och drar slutsatsen att nätverkets förbättrade prestanda grundar sig i dess förmåga att modellera icke-linjära beroenden i datan. Detta medför dock svårigheter i att tolka vad modellen faktiskt lärt sig, eftersom interaktionen mellan reglerande element är inbäddat i nätverkslagren. Trots det kan högpresterande modellering av alternativ splicing med hjälp av neurala nät vara användbart, exempelvis inom Syntetisk biologi där modellen kan användas för att kontrollera regleringen av splicing när man konstruerar syntetiska gener.
|
Page generated in 0.0628 seconds