• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tooth cleaning : abrasive particles but no abrasion / Nettoyage des dents : particules abrasives mais pas d'abrasion

Popa, Mihaela 09 May 2017 (has links)
En 1997 Stuard L. Fischman a dit « Certainement on mange bien, on parle bien, on a l'air bien et on « sent frais » - mais on a aussi la plaque dentaire, la gingivite et les caries dentaires. Le lecteur peut déterminer les progrès réalisés en réfléchissant à son état de santé bucco-dentaire personnel! ». Vingt ans plus tard cette affirmation reste valide. L'acte le plus commun d'hygiène buccale est de se nettoyer les dents par brosse à dents, eau et dentifrice. Le rôle principal de la brosse à dents et du dentifrice est d'éliminer le biofilm dentaire responsable des maladies buccales. Il est largement admis que le biofilm dentaire est éliminé au moyen de particules de nettoyage trouvés dans la composition du dentifrice. Puisque le mécanisme des particules nettoyantes est couramment supposé abrasif, la recherche sur le nettoyage des dents a été principalement conduite du point de vue « abrasif », elles sont ainsi appelées « particules abrasives ». Néanmoins, le nettoyage des dents est un processus complexe impliquant plusieurs mécanismes (biochimiques, physico-chimiques et mécaniques), chacun activé par des facteurs à la fois internes (comme l'environnement oral individuel et les habitudes individuelles d'hygiène buccale) et externes La conception de la brosse à dents et la composition de dentifrice). Ce travail a commencé à partir de l'idée que le nettoyage des dents ne peut pas être réduit à un processus d'abrasion; par conséquence, afin d'acquérir une connaissance plus profonde du comportement réel des particules nettoyantes, il est nécessaire de comprendre la contribution de chaque mécanisme d'action impliqué. Un système biomimétique a été développé pour reproduire la brosse à dents, l'émail dentaire, la pellicule exogène acquise et le dentifrice (une suspension simplifiée à base de silice). Le système a été analysé d'un point de vue tribologique, en adoptant la théorie du « troisième corps » et en utilisant différentes techniques expérimentales (spectroscopie infrarouge, microscopie à force atomique, la microscopie électronique à balayage). On a déterminé la contribution de la mécanique et de la physico-chimie de la surface de l'émail dentaire, de la chimie du dentifrice et de la mécanique de la brosse à dents. Les résultats ont montré que la pellicule exogène acquise biomimétique n'a pas été rayée pendant le nettoyage des dents, mais plutôt lissée ou enlevée, ce qui suggère que l'abrasion n'est pas le mécanisme «gouvernant» du processus de brossage des dents. En effet, un mécanisme de «lubrification fractionnée» est supposé intervenir, favorisant la formation des agglomérats de silice supportent la charge normale dans des zones de contact localisées. L'efficacité du processus de nettoyage des dents est censée être contrôlée par la taille des agglomérats de silice, qui dépend à son tour de la mécanique et la physico-chimie de la surface de l’émail dentaire, de la chimie du dentifrice et de la mécanique de la brosse à dents. / In 1997, Stuart L. Fischman wrote “We certainly eat well, speak well, look fine and ‘smell fresh’—but we also have plaque, gingivitis and dental caries. The reader can determine how much progress has been made by reflecting on his or her personal oral health status!” Two decades later, this affirmation is still valid. The most common act of oral hygiene is to clean one’s teeth via toothbrush, water, and dentifrice. The main role of toothbrush and dentifrice is to remove the dental biofilm responsible for oral diseases. Over the years, several studies have focused on improving toothbrushing techniques, toothbrush design, and dentifrice composition, often leading to conflicting results. It is largely accepted that dental biofilm is removed by means of cleansing particles, which can be found in many dentifrice compositions. Since the mechanism of the cleansing particles is commonly believed to be abrasive, research on teeth cleaning has been mainly conducted from an ‘abrasive’ point of view, so much so that cleansing particles are frequently referred to as ‘abrasive particles’. Nonetheless, teeth cleaning is a complex process involving several mechanisms (bio-chemical, physico-chemical, and mechanical), each one activated by factors that are both internal (such as individual oral environment and individual oral hygiene habits) and external (such as toothbrush design and dentifrice composition). This work started from the idea that teeth cleaning cannot be reduced to an abrasion process; consequently, in order to gain deeper knowledge about the actual behavior of the cleansing particles, it is necessary to understand the contribution of each mechanism involved. A biomimetic system was developed to reproduce toothbrush, dental enamel, acquired enamel pellicle, and dentifrice (modeled as a silica-based slurry). The system was analyzed from a tribological point of view, adopting the ‘third-body approach’ and employing different experimental techniques such as infrared spectroscopy, atomic force microscopy, and environmental scanning electron microscopy. The contribution of the dental enamel surface mechanics and physico-chemistry, of the dentifrice chemistry, and of toothbrush mechanics was assessed. Results showed that the biomimetic acquired enamel pellicle was not scratched during teeth cleaning, but rather smoothened or removed, suggesting that abrasion is not the governing mechanism of the toothbrushing process. Indeed, a ‘fractionated lubrication’ mechanism is believed to take part, promoting the formation of silica agglomerates that bear normal load at localized contact areas. The effectiveness of the teeth cleaning process is believed to be controlled by the size of the silica agglomerates, which in turn depends on dental enamel surface mechanics and physico-chemistry, dentifrice chemistry, and toothbrush mechanics.
2

Système biomimétique d'intermédiaires de transport tubulaires : Etude quantitative

Leduc, Cecile 03 June 2005 (has links) (PDF)
Les tubes de membrane sont omniprésents dans les cellules vivantes eucaryotes. Ce sont des structures très dynamiques qui permettent en particulier la communication entre les différents compartiments de la cellule. Pour comprendre les mécanismes impliqués dans le trafic intracellulaire, il paraît essentiel d'isoler le rôle des différents constituants impliques. Dans ce but, un système minimal qui permet de mimer in vitro les différentes étapes d'extraction, de croissance et d'arrêt des tubes de membrane avec des éléments purifies ou artificiels (kinesines, microtubules, vésicules géantes unilamellaires) a été utilise. La comparaison des résultats expérimentaux avec ceux obtenus par une analyse théorique du système a ainsi permis de caractériser de fa¸con complète ces différentes étapes. Nous avons notamment montre l'existence d'un seuil de formation de tubes qui dépend essentiellement de deux paramètres non locaux supramoléculaires : la tension de membrane et la quantité de kin'esines 'a la surface des vésicules. Lorsque le tube est forme, nous avons évalue le nombre de moteurs qui le tirent et montre qu'ils s'accumulent de fa¸con dynamique au bout du tube. De la mesure de la longueur caractéristique d'accumulation, nous avons déduit un paramètre moléculaire : le taux d'attachement des kin'esines sur un microtubule dans une géométrie proche de celle observée in vivo. Enfin, nous avons mis en évidence un phénomène d'oscillations liées au comportement collectif de moteurs processifs pour des tubes très longs. Ce système, bien que simplifie, permet d'apporter une nouvelle approche du trafic intracellulaire, en proposant des mécanismes physiques qui sont souvent masques, dans les cellules, par des mécanismes mol'eculaires.
3

Étude du rôle de l’auto-organisation de l’actine cytoplasmique au sein de deux systèmes modèles : extraits cellulaires de Xénope et ovocytes de souris / New insights into the roles of cytoplasmic F-actin self-organization using two model systems : Xenopus egg extracts and mouse oocytes

Colin, Alexandra 15 September 2017 (has links)
La division cellulaire est un élément clé du développement. Pendant ce processus, le matériel génétique (chromosomes) est distribué entre les deux cellules filles. Cette distribution est effectuée par le fuseau mitotique ou méiotique ; une mauvaise formation de cette structure peut être critique. Le cytosquelette joue un rôle prédominant dans la division cellulaire. Malgré des progrès importants dans la compréhension de son rôle dans le processus de division cellulaire, de nombreuses questions restent encore sans réponse et des progrès techniques pour étudier ces phénomènes sont nécessaires. Dans cette thèse, nous avons étudié le rôle de l’auto-organisation de l’actine cytoplasmique dans deux systèmes modèles : les extraits cellulaires de Xénope et les ovocytes de souris. En utilisant une approche interdisciplinaire, nous avons développé de nouveaux outils expérimentaux et analytiques pour étudier le rôle de l’actine cytoplasmique pendant la division cellulaire. En encapsulant les extraits cellulaires de Xénope dans des gouttes, nous pouvons mimer le volume cellulaire. Nous utilisons ce système pour étudier les interactions entre l’actine et les microtubules. Dans un premier projet, nous avons montré que l’auto-organisation de l’actine peut déclencher des cascades de signalisation. Grâce à l’ingénierie de deux propriétés de l’actine, nous avons démontré que l’auto-organisation de ce polymère peut permettre l’assemblage de microtubules. Dans un deuxième projet, nous avons montré que la dynamique de l’actine cytoplasmique peut induire des contraintes sur l’organisation et la dynamique des microtubules. Nos résultats suggèrent que les propriétés dynamiques du réseau d’actine sont un facteur important pour l’assemblage des microtubules. Dans l’ovocyte de souris, nous avons développé une méthode pour suivre de manière automatique le mouvement d’objets passifs avec des tailles variables. Nous avons utilisé ce système pour étudier l’effet de l’actine cytoplasmique sur le transport à longue portée. Nous avons ainsi validé l’existence d’un mécanisme de centrage non spécifique de gros objets pendant la prophase. Nous avons aussi démontré que ce mécanisme de centrage reste présent pendant le reste de la méiose, en même temps que la migration du fuseau vers le cortex de l’ovocyte. / Cell division is a key element of the development of an embryo throughout all his life. During cell division, the genetic material (chromosomes) is distributed between the two daughter cells. This distribution is achieved by the spindle and a misbehavior in the formation of this structure can be critical. The cytoskeleton polymers are playing a predominant role in cell division. Despite important progresses in the understanding of their role in cell division process, numerous questions still have to be answered and technical progresses to study these phenomena are still needed. In this PhD work, we studied the role of cytoplasmic F-actin self-organization in two model systems: Xenopus egg extracts and mouse oocytes. Using an interdisciplinary approach, we developed new experimental and analytical tools to study the role of cytoplasmic F-actin during cell division. By encapsulating Xenopus actin-intact egg extracts in droplets, we are able to mimic cellular environment. We use this system to study interactions between F-actin and microtubules. In a first project, we showed that F-actin self-organization can trigger signaling pathways. By engineering two properties of the microfilament self-organization and using Ran dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. In a second project, we showed that the dynamics of cytoplasmic F-actin can induce constraints on the microtubule organization and dynamics in aster and spindle structures. Our results suggest that the dynamic properties of cytoplasmic F-actin meshwork are of a primary importance for the proper assembly of microtubule structures.In the mouse oocyte, we set-up a method to automatically track the movement of passive objects with tunable size. We used this system to examine the effect of cytoplasmic F-actin on long-range transport. We thus validated the existence of a non-specific mechanism for large objects centering during Prophase. We also demonstrated that this centering mechanism is still present during the rest of meiosis, coexisting with the spindle migration toward the cortex.

Page generated in 0.0469 seconds