• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The neural substrate of goal-directed locomotion in zebrafish and whole-brain functional imaging with two-photon light-sheet microscopy / Bases neuronales de la navigation dirigée chez le poisson zèbre et imagerie par nappe laser 2 photons de l’activité neuronale

Wolf, Sébastien 13 October 2017 (has links)
La première partie de cette thèse présente une revue historique sur les méthodes d'enregistrements d'activité neuronale, suivie par une étude sur une nouvelle technique d'imagerie pour le poisson zèbre : la microscopie par nappe laser 2 photon. En combinant, les avantages de la microscopie 2 photon et l'imagerie par nappe de lumière, le microscope par nappe laser 2 photon garantie des enregistrements à haute vitesse avec un faible taux de lésions photoniques et permet d'éviter l'une des principales limitations du microscope à nappe laser 1 photon: la perturbation du système visuel. La deuxième partie de cette thèse traite de la navigation dirigée. Après une revue exhaustive sur la chemotaxis, la phototaxis et la thermotaxis, nous présentons des résultats qui révèlent les bases neuronales de la phototaxis chez le poisson zèbre. Grace à des expériences de comportement en réalité-virtuelle, des enregistrements d'activité neuronale, des méthodes optogénétiques et des approches théoriques, ce travail montre qu'une population auto-oscillante située dans le rhombencéphale appelée l'oscillateur du cerveau postérieur (HBO) fonctionne comme un pacemaker des saccades oculaires et contrôle l'orientation des mouvements de nage du poisson zèbre. Ce HBO répond à la lumière en fonction du contexte moteur, biaisant ainsi la trajectoire du poisson zèbre vers les zones les plus lumineuses de son environnement (phototaxis). La troisième partie propose une discussion sur les bases neuronales des saccades oculaires chez les vertébrés. Nous concluons ce manuscrit avec des résultats préliminaires suggérant que chez le poisson zèbre, le même HBO est impliqué dans les processus de thermotaxis. / The first part of this thesis presents an historical overview of neural recording techniques, followed by a study on the development of a new imaging method for zebrafish neural recording: two-photon light sheet microscopy. Combining the advantages of two-photon point scanning microscopy and light sheet techniques, the two-photon light sheet microscope warrants a high acquisition speed with low photodamage and allows to circumvent the main limitation of one-photon light sheet microscopy: the disturbance of the visual system. The second part of the thesis is focused on goal-directed navigation in zebrafish larvae. After an exhaustive review on chemotaxis, phototaxis and thermotaxis in various animal models, we report a study that reveals the neural computation underlying phototaxis in zebrafish. Combining virtual-reality behavioral assays, volumetric calcium recordings, optogenetic stimulation, and circuit modeling, this work shows that a self-oscillating hindbrain population called the hindbrain oscillator (HBO) acts as a pacemaker for ocular saccades, controls the orientation of successive swim-bouts during zebrafish larva navigation, and is responsive to light in a state-dependent manner such that its response to visual inputs varies with the motor context. This peculiar response to visual inputs biases the fish trajectory towards brighter regions (phototaxis). The third part provides a discussion on the neural basis of ocular saccades in vertebrates. We conclude with some recent preliminary results on heat perception in zebrafish suggesting that the same hindbrain circuit may be at play in thermotaxis as well.
2

Mécanismes et bases neurales du contrôle sensorimoteur des saccades oculaires chez l’Homme et le macaque / Mechanisms and neural bases of saccadic sensorimotor control in human and macaque

Munuera, Jérôme 08 January 2010 (has links)
Regarder ou saisir un objet constituent, à première vue, des actes simples et triviaux. De tels mouvements nécessitent, entre autres, l’existence de complexes processus entre entrées sensorielles et sorties motrices afin de compenser l’effet de la variabilité sensorimotrice inhérente au système. Un concept clé décrit ces processus de contrôle : les modèles internes. Il s’agit de représentations dynamiques de l’état de nos appareils sensorimoteurs, inscrites au sein d’un réseau d’aires cérébrales, permettant la comparaison entre un mouvement désiré (parfait) et le mouvement réalisé (bruité). Lorsqu’une différence est perçue suite à cette comparaison, un signal d’erreur motrice (EM) serait envoyé afin d’ajuster le mouvement en cours d’exécution. Nous avons réalisé une première étude chez l’Homme afin de définir le rôle des modèles internes lors d’un acte sensorimoteur simple: la saccade oculaire. Une tâche originale nous a permis d’introduire du bruit moteur artificiel (saut de cible intrasaccadique) durant une séquence saccadique. Les résultats valident l’existence d’un mécanisme de contrôle sensorimoteur optimal et confirme la prédiction d’un modèle basé sur la théorie des filtres de Kalman, pondérant la «confiance» accordée aux mouvements désirés versus réalisés en fonction de leur fiabilité (l’inverse de leur variance). Nous nous sommes alors attachés à rechercher les substrats cérébraux du calcul de l’EM en adaptant nos paradigmes chez le macaque rhésus. Nous avons enregistré l’activité électrophysiologique neuronale unitaire puis réalisé des inactivations réversibles au sein de l’aire latérale intrapariétale (LIP), région clé pour l’intégration visuo-saccadique. Nos résultats suggèrent que le cortex pariétal serait impliqué dans l’ajustement moteur du système saccadique. Le cortex pariètal pourrait ainsi accumuler des évidences (signaux d’erreur donnés par la copie d’efférence et les retours sensoriels) quant à la présence d’erreur oculomotrice puis inciter le reste du réseau saccadique à corriger cette dernière. Ce mécanisme permettrait alors d’optimiser la plupart des actions motrices réalisées dans des contextes sensorimoteurs constamment bruités / Looking at or grasping an object are simple and trivial actions. However, these types of movements require complex processing of sensory and motor information in order to compensate for the natural variability within the sensorimotor system. A key concept describes these control processes: internal models. These models are dynamical representations of the state of our effectors, supported by a network of cerebral areas, which allow the comparison between the desired movement (perfect) and the realised movement (noisy). When a difference is perceived, a motor error (ME) signal is sent in order to adjust the ongoing movement. We performed a first study with human subjects to define the role of internal models during a simple sensorimotor action: a saccade. We developed an original task in order to introduce artificial motor noise (intrasaccadic target jump) during a sequence of saccades. These results validates the existence of an optimal sensorimotor control mechanism and confirms the predictions of a model based on the Kalman filter theory. This optimal control implies a balance between the reliability given to the desired movements versus the executed movements as a function of their uncertaincy (correlate to their variability). We then investigated the neural substrates of the ME estimation by adapting our protocols for use with rhesus monkeys. We recorded the electrophysiological activity of unitary neurons and performed reversible inactivations in the lateral intraparietal area (LIP), a key area for visuo-saccadic integration. Our results suggest, therefore, that the parietal cortex plays a role in the motor adjustment of the saccadic system. We postulate that parietal cortex could accumulate evidence (i.e. error signal given by efferent copy and sensorial feedback) on the necessity to perform a corrective saccade. When the amount of evidence exceeds an error threshold, the decision to trigger a correction could be made. This process could allow the optimization of these motor actions within noisy sensorimotor context

Page generated in 0.0338 seconds