Spelling suggestions: "subject:"asystèmes d'équations différentielle"" "subject:"desystèmes d'équations différentielle""
1 |
Modelling heat transfer for energy effiency assessment of buildings : Identification of physical parameters / Estimations des performances énergétiques des bâtiments par l’identification des paramètres des modèles physiquesNaveros Mesa, Ibán 24 October 2016 (has links)
La performance énergétique est un pilier pour réduire l'utilisation d'énergie non renouvelable, en plus de l'utilisation des énergies renouvelables. En fait, les bâtiments sont au cœur de la politique des performances énergétiques de l'UE puisque 40% de la consommation finale d'énergie et 36% des émissions de gaz à effet de serre provient des bureaux, magasins et autres bâtiments. Les bâtiments peuvent être considérés comme des systèmes dynamiques et le transfert de la chaleur dans les bâtiments peut être représenté en utilisant des modèles dynamiques. De cette façon, le transfert de la chaleur dans les bâtiments peut être décrit par des réseaux thermiques obtenus en utilisant la théorie des graphes et de la thermodynamique, et peuvent être déduits de l'équation de la chaleur classique. Les réseaux thermiques peuvent être exprimés comme un système d'équations différentielles et algébriques (DAE) qui peut être transformé en représentation d'état et obtenir un fonction de transfert à partir de laquelle un modèle autorégressif avec des variables exogènes (ARX) peut être obtenu. Ces différentes structures de modèle peuvent être utilisées pour identifier les paramètres physiques des réseaux thermiques, ce qui implique que la méthode peut être utilisée pour identifier la performance intrinsèque des bâtiments et aider à la réduction de la consommation d'énergie dans les bâtiments.Cela peut faciliter l'évaluation de la performance énergétique des bâtiments dans un cadre reproductible qui permet la comparaison entre différentes solutions constructives.Les principales contributions originales de cette thèse sont: 1) les réseaux thermiques sont présentées à partir de la théorie des graphes et de la thermodynamique, sans considérer l'analogie thermique-électrique; 2) l'équation classique de la chaleur est reliée explicitement avec un système de DAE (réseau thermique) par les éléments finis; 3) différentes transformations pour déduire des modèles du transfert de la chaleur avec signification physique, à partir de l'équation de la chaleur classique, sont présentées toutes ensemble; 4) les transformations entre les modèles sont effectuées à partir des réseaux thermiques jusqu’aux modèles autorégressifs avec des variables exogènes (ARX) et vice-versa; et 5) un critère de sélection de l'ordre du modèle par une analyse de fréquence des mesures est proposé. / Energy efficiency is one of the two pillars to decrease the use of non-renewable energy besides the use of renewables energies. In fact, buildings are central to the EU's energy efficiency policy, as nearly 40% of the final energy consumption and 36% of greenhouse gas emissions take place in houses, offices, shops and other buildings. Buildings may be considered as dynamic systems and heat transfer in buildings may be represented using dynamic models. In this way, heat transfer in buildings may be described by thermal networks which may be stated considering graph theory and thermodynamics, and may be deduced from the classical heat equation. Thermal networks may be expressed as a system of linear differential algebraic equations (DAE) and the system of linear DAE may be transformed into a state-space representation from which an autoregressive model with exogenous (ARX) can be obtained. These different model structures may be used for identifying the physical parameters of thermal networks which implies that this methodology may be useful for identifying the intrinsic performance of buildings and tackling the reduction of non-renewable energy consumption in buildings. This may facilitate the assessment of energy efficiency of buildings within a reproducible framework which allows the comparison between different constructive solutions.The main original contributions of this dissertation are: 1) thermal networks are stated from graph theory and thermodynamics, leaving back the thermal-electrical analogy; 2) classical heat equation is connected explicitly to a system of DAE (thermal network) by using the finite elements; 3) the transformations for deducing heat transfer models with physical meaning from the classical heat equation are put altogether; 4) transformations between models may are done from thermal networks to autoregressive models with exogenous (ARX) and back; and 5) a criterion for selecting the order of the model by frequency analysis of measurements is proposed.
|
2 |
Théorèmes d'existence pour des systèmes d'équations différentielles et d'équations aux échelles de temps.Gilbert, Hugues 10 1900 (has links)
Nous présentons dans cette thèse des théorèmes d’existence pour des systèmes
d’équations différentielles non-linéaires d’ordre trois, pour des systèmes d’équa-
tions et d’inclusions aux échelles de temps non-linéaires d’ordre un et pour des
systèmes d’équations aux échelles de temps non-linéaires d’ordre deux sous cer-
taines conditions aux limites.
Dans le chapitre trois, nous introduirons une notion de tube-solution pour
obtenir des théorèmes d’existence pour des systèmes d’équations différentielles
du troisième ordre. Cette nouvelle notion généralise aux systèmes les notions de
sous- et sur-solutions pour le problème aux limites de l’équation différentielle du
troisième ordre étudiée dans [34]. Dans la dernière section de ce chapitre, nous
traitons les systèmes d’ordre trois lorsque f est soumise à une condition de crois-
sance de type Wintner-Nagumo. Pour admettre l’existence de solutions d’un tel
système, nous aurons recours à la théorie des inclusions différentielles. Ce résultat
d’existence généralise de diverses façons un théorème de Grossinho et Minhós [34].
Le chapitre suivant porte sur l’existence de solutions pour deux types de sys-
tèmes d’équations aux échelles de temps du premier ordre. Les résultats d’exis-
tence pour ces deux problèmes ont été obtenus grâce à des notions de tube-solution
adaptées à ces systèmes. Le premier théorème généralise entre autre aux systèmes
et à une échelle de temps quelconque, un résultat obtenu pour des équations aux
différences finies par Mawhin et Bereanu [9]. Ce résultat permet également d’obte-
nir l’existence de solutions pour de nouveaux systèmes dont on ne pouvait obtenir
l’existence en utilisant le résultat de Dai et Tisdell [17]. Le deuxième théorème de
ce chapitre généralise quant à lui, sous certaines conditions, des résultats de [60].
Le chapitre cinq aborde un nouveau théorème d’existence pour un système d’in-
clusions aux échelles de temps du premier ordre. Selon nos recherches, aucun
résultat avant celui-ci ne traitait de l’existence de solutions pour des systèmes
d’inclusions de ce type. Ainsi, ce chapitre ouvre de nouvelles possibilités dans le
domaine des inclusions aux échelles de temps. Notre résultat a été obtenu encore
une fois à l’aide d’une hypothèse de tube-solution adaptée au problème.
Au chapitre six, nous traitons l’existence de solutions pour des systèmes
d’équations aux échelles de temps d’ordre deux. Le premier théorème d’existence
que nous obtenons généralise les résultats de [36] étant donné que l’hypothèse
que ces auteurs utilisent pour faire la majoration a priori est un cas particulier
de notre hypothèse de tube-solution pour ce type de systèmes. Notons également
que notre définition de tube-solution généralise aux systèmes les notions de sous-
et sur-solutions introduites pour les équations d’ordre deux par [4] et [55]. Ainsi,
nous généralisons également des résultats obtenus pour des équations aux échelles
de temps d’ordre deux. Finalement, nous proposons un nouveau résultat d’exis-
tence pour un système dont le membre droit des équations dépend de la ∆-dérivée
de la fonction. / In this thesis, we present existence theorems for systems of third order nonli-
near differential equations, for systems of first order nonlinear time scales equa-
tions and inclusions and for systems of second order nonlinear time scales equa-
tions under some boundary conditions. In chapter three, we introduce a concept
of solution-tube to get existence theorems for systems of third order differential
equations. This new definition generalizes to systems the notions of lower- and
upper-solution to third order differential equations introduced in [34]. In the last
part of this chapter, we study third order systems when the right member f sa-
tisfies a Wintner-Nagumo growth condition. To obtain an existence result in this
case, we use the theory of differential inclusions. This result generalizes in many
ways a theorem due to Grossinho and Minhós [34].
The next chapter concerns the existence of solutions for two kind of systems of
first order time scales equations. Existence results for these problems are obtained
with new notions of solution-tube adapted to these systems. Our first theorem ge-
neralizes to systems and to an arbitrary time scale a result for difference equations
due to Mawhin and Bereanu [9]. Our result permits to deduce the existence of so-
lutions for systems which could not be treated in a result of Dai and Tisdell [17].
The second theorem of this chapter generalizes under few conditions some results
of [60]. The fifth chapter presents a new existence theorem for a system of first
order time scales inclusions. As far as we know, there is no result in the littera-
ture for this kind of system of inclusions. Therefore, this chapter opens new doors
in the branch of time scales inclusions. Again, our new result is obtained with
the introduction of an hypothesis of solution-tube adapted to the problem studied.
In the last chapter, existence of solutions for systems of second order time
scales equations are obtained. The first result of this chapter generalizes theo-
rems of [36] since the hypothesis used by these authors to get a priori bounds
for solutions is a particular case of our definition of solution-tube for this type
of problems. Let us mention also that our notion of solution-tube generalizes to
systems the definitions of lower- and upper-solution used for second order time
scales equations by [4] and [55]. We also generalize to systems, results obtained
for second order time scales equations. Finally, we conclude this chapter with a
new existence result for systems of second order time scales equations with a right
member depending on the ∆-derivative.
|
3 |
Modèles réduits et hybrides de réseaux de réactions biochimiques : applications à la modélisation du cycle cellulaireNoël, Vincent 20 December 2012 (has links) (PDF)
La modélisation des systèmes biologiques, particulièrement à l'échelle moléculaire, est une problématique nouvelle, issue de l'apport des techniques à haut débit. Le défi en modélisation mathématique est de pouvoir analyser le comportement de ces systèmes dynamiques de très grande dimension. L'enjeu est de taille, car la compréhension du fonctionnement normal et pathologique des cellules au niveau moléculaire, ouvre la voie aux thérapies ciblés pour des maladies systémiques telles que le cancer. Pour s'affranchir des problèmes liés à l'imprécision des valeurs des paramètres, cette thèse propose de travailler avec des ordres, plutôt qu'avec des valeurs précises de paramètres. Ceci conduit naturellement à l'utilisation de l'analyse tropicale pour obtenir des modèles réduits et hybrides. Ces développements ouvrent des nouvelles perspectives sur le plan mathématique, concernant l'étude de systèmes dynamiques. Cette étude propose quelques résultats concernant la tropicalisation des systèmes d'équations différentielles. Une autre partie de la thèse est consacrée à l'étude numérique des systèmes hybrides. La question ici est comment construire un modèle hybride qui reproduit un comportement expérimental donné, aussi comment identifier un modèle hybride à partir de séries temporelles. Cette thèse propose un algorithme original d'identification. Cet algorithme sépare le problème en deux sous-problèmes, notamment l'identification des paramètres des modes et l'identification des paramètres de commande des modes. Des applications à relativement grande échelle sont abordées par cette approche, notamment un modèle de cycle cellulaire chez les mammifères.
|
4 |
Théorèmes d'existence pour des systèmes d'équations différentielles et d'équations aux échelles de tempsGilbert, Hugues 10 1900 (has links)
No description available.
|
Page generated in 0.1699 seconds