• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 19
  • 1
  • Tagged with
  • 44
  • 44
  • 33
  • 26
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Papyres : un système de gestion et de recommandation d’articles de recherche

Naak, Amine 07 1900 (has links)
Les étudiants gradués et les professeurs (les chercheurs, en général), accèdent, passent en revue et utilisent régulièrement un grand nombre d’articles, cependant aucun des outils et solutions existants ne fournit la vaste gamme de fonctionnalités exigées pour gérer correctement ces ressources. En effet, les systèmes de gestion de bibliographie gèrent les références et les citations, mais ne parviennent pas à aider les chercheurs à manipuler et à localiser des ressources. D'autre part, les systèmes de recommandation d’articles de recherche et les moteurs de recherche spécialisés aident les chercheurs à localiser de nouvelles ressources, mais là encore échouent dans l’aide à les gérer. Finalement, les systèmes de gestion de contenu d'entreprise offrent les fonctionnalités de gestion de documents et des connaissances, mais ne sont pas conçus pour les articles de recherche. Dans ce mémoire, nous présentons une nouvelle classe de systèmes de gestion : système de gestion et de recommandation d’articles de recherche. Papyres (Naak, Hage, & Aïmeur, 2008, 2009) est un prototype qui l’illustre. Il combine des fonctionnalités de bibliographie avec des techniques de recommandation d’articles et des outils de gestion de contenu, afin de fournir un ensemble de fonctionnalités pour localiser les articles de recherche, manipuler et maintenir les bibliographies. De plus, il permet de gérer et partager les connaissances relatives à la littérature. La technique de recommandation utilisée dans Papyres est originale. Sa particularité réside dans l'aspect multicritère introduit dans le processus de filtrage collaboratif, permettant ainsi aux chercheurs d'indiquer leur intérêt pour des parties spécifiques des articles. De plus, nous proposons de tester et de comparer plusieurs approches afin de déterminer le voisinage dans le processus de Filtrage Collaboratif Multicritère, de telle sorte à accroître la précision de la recommandation. Enfin, nous ferons un rapport global sur la mise en œuvre et la validation de Papyres. / Graduate students and professors (researchers, in general) regularly access, review, and use large amounts of research papers, yet none of the existing tools and solutions provides the wide range of functionalities required to properly manage these resources. Indeed, bibliography management systems manage the references and citations but fail to help researchers in handling and locating resources. On the other hand, research paper recommendation systems and specialized search engines help researchers to locate new resources, but again fail to help researchers in managing the resources. Finally, Enterprise Content Management systems offer the required functionalities to manage resources and knowledge, but are not designed for research literature. Consequently, we suggest a new class of management systems: Research Paper Management and Recommendation System. Through our system Papyres (Naak, Hage, & Aïmeur, 2008, 2009) we illustrate our approach, which combines bibliography functionalities along with recommendation techniques and content management tools, in order to provide a set of functionalities to locate research papers, handle and maintain the bibliographies, and to manage and share knowledge related to the research literature. Additionally, we propose a novel research paper recommendation technique, used within Papyres. Its uniqueness lies in the multicriteria aspect introduced in the process of collaborative filtering, allowing researchers to indicate their interest in specific parts of articles. Moreover, we suggest test and compare several approaches to determine the neighbourhood in the Multicriteria Collaborative Filtering process, such as to increase the accuracy of the recommendation. Finally, we report on the implementation and validation of Papyres.
42

Papyres : un système de gestion et de recommandation d’articles de recherche

Naak, Amine 07 1900 (has links)
Les étudiants gradués et les professeurs (les chercheurs, en général), accèdent, passent en revue et utilisent régulièrement un grand nombre d’articles, cependant aucun des outils et solutions existants ne fournit la vaste gamme de fonctionnalités exigées pour gérer correctement ces ressources. En effet, les systèmes de gestion de bibliographie gèrent les références et les citations, mais ne parviennent pas à aider les chercheurs à manipuler et à localiser des ressources. D'autre part, les systèmes de recommandation d’articles de recherche et les moteurs de recherche spécialisés aident les chercheurs à localiser de nouvelles ressources, mais là encore échouent dans l’aide à les gérer. Finalement, les systèmes de gestion de contenu d'entreprise offrent les fonctionnalités de gestion de documents et des connaissances, mais ne sont pas conçus pour les articles de recherche. Dans ce mémoire, nous présentons une nouvelle classe de systèmes de gestion : système de gestion et de recommandation d’articles de recherche. Papyres (Naak, Hage, & Aïmeur, 2008, 2009) est un prototype qui l’illustre. Il combine des fonctionnalités de bibliographie avec des techniques de recommandation d’articles et des outils de gestion de contenu, afin de fournir un ensemble de fonctionnalités pour localiser les articles de recherche, manipuler et maintenir les bibliographies. De plus, il permet de gérer et partager les connaissances relatives à la littérature. La technique de recommandation utilisée dans Papyres est originale. Sa particularité réside dans l'aspect multicritère introduit dans le processus de filtrage collaboratif, permettant ainsi aux chercheurs d'indiquer leur intérêt pour des parties spécifiques des articles. De plus, nous proposons de tester et de comparer plusieurs approches afin de déterminer le voisinage dans le processus de Filtrage Collaboratif Multicritère, de telle sorte à accroître la précision de la recommandation. Enfin, nous ferons un rapport global sur la mise en œuvre et la validation de Papyres. / Graduate students and professors (researchers, in general) regularly access, review, and use large amounts of research papers, yet none of the existing tools and solutions provides the wide range of functionalities required to properly manage these resources. Indeed, bibliography management systems manage the references and citations but fail to help researchers in handling and locating resources. On the other hand, research paper recommendation systems and specialized search engines help researchers to locate new resources, but again fail to help researchers in managing the resources. Finally, Enterprise Content Management systems offer the required functionalities to manage resources and knowledge, but are not designed for research literature. Consequently, we suggest a new class of management systems: Research Paper Management and Recommendation System. Through our system Papyres (Naak, Hage, & Aïmeur, 2008, 2009) we illustrate our approach, which combines bibliography functionalities along with recommendation techniques and content management tools, in order to provide a set of functionalities to locate research papers, handle and maintain the bibliographies, and to manage and share knowledge related to the research literature. Additionally, we propose a novel research paper recommendation technique, used within Papyres. Its uniqueness lies in the multicriteria aspect introduced in the process of collaborative filtering, allowing researchers to indicate their interest in specific parts of articles. Moreover, we suggest test and compare several approaches to determine the neighbourhood in the Multicriteria Collaborative Filtering process, such as to increase the accuracy of the recommendation. Finally, we report on the implementation and validation of Papyres.
43

Probabilistic and Bayesian nonparametric approaches for recommender systems and networks / Approches probabilistes et bayésiennes non paramétriques pour les systemes de recommandation et les réseaux

Todeschini, Adrien 10 November 2016 (has links)
Nous proposons deux nouvelles approches pour les systèmes de recommandation et les réseaux. Dans la première partie, nous donnons d’abord un aperçu sur les systèmes de recommandation avant de nous concentrer sur les approches de rang faible pour la complétion de matrice. En nous appuyant sur une approche probabiliste, nous proposons de nouvelles fonctions de pénalité sur les valeurs singulières de la matrice de rang faible. En exploitant une représentation de modèle de mélange de cette pénalité, nous montrons qu’un ensemble de variables latentes convenablement choisi permet de développer un algorithme espérance-maximisation afin d’obtenir un maximum a posteriori de la matrice de rang faible complétée. L’algorithme résultant est un algorithme à seuillage doux itératif qui adapte de manière itérative les coefficients de réduction associés aux valeurs singulières. L’algorithme est simple à mettre en œuvre et peut s’adapter à de grandes matrices. Nous fournissons des comparaisons numériques entre notre approche et de récentes alternatives montrant l’intérêt de l’approche proposée pour la complétion de matrice à rang faible. Dans la deuxième partie, nous présentons d’abord quelques prérequis sur l’approche bayésienne non paramétrique et en particulier sur les mesures complètement aléatoires et leur extension multivariée, les mesures complètement aléatoires composées. Nous proposons ensuite un nouveau modèle statistique pour les réseaux creux qui se structurent en communautés avec chevauchement. Le modèle est basé sur la représentation du graphe comme un processus ponctuel échangeable, et généralise naturellement des modèles probabilistes existants à structure en blocs avec chevauchement au régime creux. Notre construction s’appuie sur des vecteurs de mesures complètement aléatoires, et possède des paramètres interprétables, chaque nœud étant associé un vecteur représentant son niveau d’affiliation à certaines communautés latentes. Nous développons des méthodes pour simuler cette classe de graphes aléatoires, ainsi que pour effectuer l’inférence a posteriori. Nous montrons que l’approche proposée peut récupérer une structure interprétable à partir de deux réseaux du monde réel et peut gérer des graphes avec des milliers de nœuds et des dizaines de milliers de connections. / We propose two novel approaches for recommender systems and networks. In the first part, we first give an overview of recommender systems and concentrate on the low-rank approaches for matrix completion. Building on a probabilistic approach, we propose novel penalty functions on the singular values of the low-rank matrix. By exploiting a mixture model representation of this penalty, we show that a suitably chosen set of latent variables enables to derive an expectation-maximization algorithm to obtain a maximum a posteriori estimate of the completed low-rank matrix. The resulting algorithm is an iterative soft-thresholded algorithm which iteratively adapts the shrinkage coefficients associated to the singular values. The algorithm is simple to implement and can scale to large matrices. We provide numerical comparisons between our approach and recent alternatives showing the interest of the proposed approach for low-rank matrix completion. In the second part, we first introduce some background on Bayesian nonparametrics and in particular on completely random measures (CRMs) and their multivariate extension, the compound CRMs. We then propose a novel statistical model for sparse networks with overlapping community structure. The model is based on representing the graph as an exchangeable point process, and naturally generalizes existing probabilistic models with overlapping block-structure to the sparse regime. Our construction builds on vectors of CRMs, and has interpretable parameters, each node being assigned a vector representing its level of affiliation to some latent communities. We develop methods for simulating this class of random graphs, as well as to perform posterior inference. We show that the proposed approach can recover interpretable structure from two real-world networks and can handle graphs with thousands of nodes and tens of thousands of edges.
44

Von Mises-Fisher based (co-)clustering for high-dimensional sparse data : application to text and collaborative filtering data / Modèles de mélange de von Mises-Fisher pour la classification simple et croisée de données éparses de grande dimension

Salah, Aghiles 21 November 2016 (has links)
La classification automatique, qui consiste à regrouper des objets similaires au sein de groupes, également appelés classes ou clusters, est sans aucun doute l’une des méthodes d’apprentissage non-supervisé les plus utiles dans le contexte du Big Data. En effet, avec l’expansion des volumes de données disponibles, notamment sur le web, la classification ne cesse de gagner en importance dans le domaine de la science des données pour la réalisation de différentes tâches, telles que le résumé automatique, la réduction de dimension, la visualisation, la détection d’anomalies, l’accélération des moteurs de recherche, l’organisation d’énormes ensembles de données, etc. De nombreuses méthodes de classification ont été développées à ce jour, ces dernières sont cependant fortement mises en difficulté par les caractéristiques complexes des ensembles de données que l’on rencontre dans certains domaines d’actualité tel que le Filtrage Collaboratif (FC) et de la fouille de textes. Ces données, souvent représentées sous forme de matrices, sont de très grande dimension (des milliers de variables) et extrêmement creuses (ou sparses, avec plus de 95% de zéros). En plus d’être de grande dimension et sparse, les données rencontrées dans les domaines mentionnés ci-dessus sont également de nature directionnelles. En effet, plusieurs études antérieures ont démontré empiriquement que les mesures directionnelles, telle que la similarité cosinus, sont supérieurs à d’autres mesures, telle que la distance Euclidiennes, pour la classification des documents textuels ou pour mesurer les similitudes entre les utilisateurs/items dans le FC. Cela suggère que, dans un tel contexte, c’est la direction d’un vecteur de données (e.g., représentant un document texte) qui est pertinente, et non pas sa longueur. Il est intéressant de noter que la similarité cosinus est exactement le produit scalaire entre des vecteurs unitaires (de norme 1). Ainsi, d’un point de vue probabiliste l’utilisation de la similarité cosinus revient à supposer que les données sont directionnelles et réparties sur la surface d’une hypersphère unité. En dépit des nombreuses preuves empiriques suggérant que certains ensembles de données sparses et de grande dimension sont mieux modélisés sur une hypersphère unité, la plupart des modèles existants dans le contexte de la fouille de textes et du FC s’appuient sur des hypothèses populaires : distributions Gaussiennes ou Multinomiales, qui sont malheureusement inadéquates pour des données directionnelles. Dans cette thèse, nous nous focalisons sur deux challenges d’actualité, à savoir la classification des documents textuels et la recommandation d’items, qui ne cesse d’attirer l’attention dans les domaines de la fouille de textes et celui du filtrage collaborative, respectivement. Afin de répondre aux limitations ci-dessus, nous proposons une série de nouveaux modèles et algorithmes qui s’appuient sur la distribution de von Mises-Fisher (vMF) qui est plus appropriée aux données directionnelles distribuées sur une hypersphère unité. / Cluster analysis or clustering, which aims to group together similar objects, is undoubtedly a very powerful unsupervised learning technique. With the growing amount of available data, clustering is increasingly gaining in importance in various areas of data science for several reasons such as automatic summarization, dimensionality reduction, visualization, outlier detection, speed up research engines, organization of huge data sets, etc. Existing clustering approaches are, however, severely challenged by the high dimensionality and extreme sparsity of the data sets arising in some current areas of interest, such as Collaborative Filtering (CF) and text mining. Such data often consists of thousands of features and more than 95% of zero entries. In addition to being high dimensional and sparse, the data sets encountered in the aforementioned domains are also directional in nature. In fact, several previous studies have empirically demonstrated that directional measures—that measure the distance between objects relative to the angle between them—, such as the cosine similarity, are substantially superior to other measures such as Euclidean distortions, for clustering text documents or assessing the similarities between users/items in CF. This suggests that in such context only the direction of a data vector (e.g., text document) is relevant, not its magnitude. It is worth noting that the cosine similarity is exactly the scalar product between unit length data vectors, i.e., L 2 normalized vectors. Thus, from a probabilistic perspective using the cosine similarity is equivalent to assuming that the data are directional data distributed on the surface of a unit-hypersphere. Despite the substantial empirical evidence that certain high dimensional sparse data sets, such as those encountered in the above domains, are better modeled as directional data, most existing models in text mining and CF are based on popular assumptions such as Gaussian, Multinomial or Bernoulli which are inadequate for L 2 normalized data. In this thesis, we focus on the two challenging tasks of text document clustering and item recommendation, which are still attracting a lot of attention in the domains of text mining and CF, respectively. In order to address the above limitations, we propose a suite of new models and algorithms which rely on the von Mises-Fisher (vMF) assumption that arises naturally for directional data lying on a unit-hypersphere.

Page generated in 0.0976 seconds