Spelling suggestions: "subject:"asystèmes diphasique"" "subject:"desystèmes diphasique""
1 |
Un schéma aux volumes finis avec matrice signe pour les systèmes non homogènesSAHMIM, Slah 15 June 2005 (has links) (PDF)
Cette thèse est consacrée à l'analyse, à l'application et à l'extension bidimensionnelle, d'un nouveau schéma aux volumes finis (SRNH) proposé récemment pour une classe de système non homogène. L'analyse de stabilité du schéma, d'abord dans le cas scalaire ensuite dans le cas de systèmes, mène à une nouvelle formulation où intervient le signe de la matrice Jacobienne du système de lois de bilan considéré. Pour le système de Saint Venant avec terme de pente, on montre formellement que le schéma SRNHS vérifie la C-propriété exacte introduite pour les schémas équilibres par Bermùdez et Vázquez. Les résultats numériques 1D et 2D, en particulier du cas de rupture de barage sur un fond en forme de marche, montrent le degrés d'efficacité du schéma. Pour le système diphasiques des zones de non hyperbolicité peuvent exister, avec apparition de valeurs propres complexes dans la Jacobienne du système. On montre que pour les configurations faiblement non hyperboliques, on peut calculer le signe de la Jacobienne par l'algorithme de Newton-Schultz. Pour les configurations plus raides, où la méthode précédente ne fonctionne plus, on a recours à la méthode de perturbation par densité. Dans les deux cas évoqués, les tests numériques montrent que l'on approche la solution exacte du problème de Ransom avec une grande précision, et que l'on conserve la stabilité des calculs même avec un maillage de finesse relativement élevée.
|
2 |
Simulation numérique en volume finis, de problèmes d'écoulements multidimensionnels raides, par un schéma de flux à deux pasMOHAMED, Kamel 12 October 2005 (has links) (PDF)
Cette thèse est consacrée à la simulation numérique de problèmes d'écoulements de fluides raides régis par des systèmes de lois de bilan non homogènes, dans des configurations monodimensionnelles et bidimensionnelles. La méthode numérique utilisée est une extension d'un schéma à deux pas (SRNH), comportant un paramètre \alpha^n_(j+\frac(1)(2)) ajustable, proposé par le professeur F.Benkhaldoun dans un cadre monodimensionnel. Ainsi, en un premier temps on a introduit une variante SRNHR, obtenue en remplaçant la vitesse numérique (\frac(\Delta x)(\Delta t)) par la vitesse de Rusanov locale, en vue de l'extension du schéma au cas bidimensionnel. Par la suite, une analyse de stabilité du schéma, révèle que celui-ci peut être d'ordre 1 ou 2 selon la valeur du paramètre \alpha^n_(j+\frac(1)(2)). Une stratégie de variation de ce paramètre, basée sur la théorie des limiteurs a alors été adoptée. Le schéma peut ainsi être rendu d'ordre 1 dans les zones à forte variation de l'écoulement, et d'ordre 2, là où l'écoulement est régulier. Ensuite on a établi les conditions pour que ce schéma respecte la C-propriété exacte introduite par Bermùdez et Vazquez. Une étude d'implémentation des conditions aux limites, adaptée à ce schéma, a également été menée en se basant sur les invariants de Riemann. Dans la deuxième partie de la thèse, on a appliqué ce schéma à des systèmes monophasiques homogènes et non homogènes. Par exemple on a réalisé la simulation du problème de rupture de barrage sur une marche, pour des configurations 1D et 2D, en menant en particulier une étude de convergence numérique via la détermination des courbes d'erreurs. Enfin, on a utilisé le schéma pour la simulation numérique de systèmes diphasiques (Ransom 1D et 2D).
|
3 |
Etude théorique et numérique de la déformation d'une interface séparant deux fluides non-miscibles à bas nombre de MachPenel, Yohan 13 December 2010 (has links) (PDF)
L'objectif de cette thèse est d'étudier un système modélisant l'évolution d'écoulements bi-fluides non miscibles dans un domaine borné, avec la perspective de mieux comprendre et de prédire le comportement de bulles dans les c{\oe}urs de réacteurs nucléaires. Ce système, appelé DLMN, est construit à partir des équations de Navier-Stokes sous l'hypothèse d'un nombre de Mach très faible. Dans le cadre d'études préliminaires, on établit des résultats d'existence et d'unicité de solutions pour des données initiales régulières (de type Sobolev) et pour différents systèmes d'équations aux dérivées partielles non-linéaires couplant équations hyperboliques, paraboliques et elliptiques. En particulier, dans le cas du modèle abstrait de vibration de bulles (ABV), on établit un certain nombre de propriétés vérifiées par les solutions, lesquelles sont explicitées en dimension $1$. On s'attache ensuite à simuler ces solutions, en utilisant des schémas adaptés à la régularité des données. Pour le cas des données régulières, on construit un schéma d'ordre $2$ inconditionnellement stable et basé sur la méthode des caractéristiques. En revanche, en présence de discontinuités, on associe un schéma non diffusif à un algorithme de raffinement adaptatif de maillages.
|
Page generated in 0.0467 seconds