• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 42
  • 26
  • 19
  • 11
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 256
  • 256
  • 64
  • 51
  • 46
  • 42
  • 33
  • 31
  • 27
  • 27
  • 25
  • 25
  • 25
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Real-Time Operating System Hardware Extension Core for System-on-Chip Designs

Best, Joel 08 January 2013 (has links)
This thesis presents a real-time operating system hardware extension core which supports the integration of hardware accelerators into real-time system-on-chip designs as hardware tasks. The hardware extension core utilizes reconfigurable logic to manage synchronization events, data transfers, and hardware task control. A reduction in interrupt latency, frequency, and execution time provides performance and predictability improvements for real-time applications. Required communication between the CPU and hardware accelerators is also reduced significantly. Compared to a software implementation, synthetic benchmarks of common synchronization tasks show up to a 41% increase in synchronization performance. Analysis of a test case design for audio encoding and encryption using three hardware accelerators shows results of a 2.89x throughput improvement in comparison to the use of software device driver tasks. Overall, this design simplifies the integration of hardware accelerators into real-time system-on-chip designs while improving the performance and predictability of these systems.
32

A Fault-tolerant Strategy for Embedded-memory SoC OFDM Receivers

Smolyakov, Vadim 27 November 2013 (has links)
The International Technology Roadmap for Semiconductors projects that embedded memories will occupy increasing System-on-Chip area. The growing density of integration increases the likelihood of fabrication faults. The proposed memory repair strategy employs forward error correction at the system level and mitigates the impact of memory faults through permutation of high sensitivity regions. The effectiveness of the proposed repair technique is demonstrated on a 19.4-Mbit de-interleaver SRAM memory of an ISDB-T digital baseband OFDM receiver in 65-nm CMOS. The proposed technique introduces a single multiplexer delay overhead and a configurable area overhead of M/i bits, where M is the number of memory rows and i is an integer from 1 to M, inclusive. The proposed strategy achieves a measured 0.15 dB gain improvement at a 2e-4 Quasi-Error-Free (QEF) BER in the presence of memory faults for an AWGN channel.
33

A Fault-tolerant Strategy for Embedded-memory SoC OFDM Receivers

Smolyakov, Vadim 27 November 2013 (has links)
The International Technology Roadmap for Semiconductors projects that embedded memories will occupy increasing System-on-Chip area. The growing density of integration increases the likelihood of fabrication faults. The proposed memory repair strategy employs forward error correction at the system level and mitigates the impact of memory faults through permutation of high sensitivity regions. The effectiveness of the proposed repair technique is demonstrated on a 19.4-Mbit de-interleaver SRAM memory of an ISDB-T digital baseband OFDM receiver in 65-nm CMOS. The proposed technique introduces a single multiplexer delay overhead and a configurable area overhead of M/i bits, where M is the number of memory rows and i is an integer from 1 to M, inclusive. The proposed strategy achieves a measured 0.15 dB gain improvement at a 2e-4 Quasi-Error-Free (QEF) BER in the presence of memory faults for an AWGN channel.
34

Dynamic Power Management of High Performance Network on Chip

Mandal, Suman Kalyan 2011 December 1900 (has links)
With increased density of modern System on Chip(SoC) communication between nodes has become a major problem. Network on Chip is a novel on chip communication paradigm to solve this by using highly scalable and efficient packet switched network. The addition of intelligent networking on the chip adds to the chip’s power consumption thus making management of communication power an interesting and challenging research problem. While VLSI techniques have evolved over time to enable power reduction in the circuit level, the highly dynamic nature of modern large SoC demand more than that. This dissertation explores some innovative dynamic solutions to manage the ever increasing communication power in the post sub-micron era. Today’s highly integrated SoCs require great level of cross layer optimizations to provide maximum efficiency. This dissertation aims at the dynamic power management problem from top. Starting with a system level distribution and management down to microarchitecture enhancements were found necessary to deliver maximum power efficiency. A distributed power budget sharing technique is proposed. To efficiently satisfy the established power budget, a novel flow control and throttling technique is proposed. Finally power efficiency of underlying microarchitecture is explored and novel buffer and link management techniques are developed. All of the proposed techniques yield improvement in power-performance efficiency of the NoC infrastructure.
35

DESIGN ENHANCEMENT AND INTEGRATION OF A PROCESSOR-MEMORY INTERCONNECT NETWORK INTO A SINGLE-CHIP MULTIPROCESSOR ARCHITECTURE

Bhide, Kanchan P. 01 January 2004 (has links)
This thesis involves modeling, design, Hardware Description Language (HDL) design capture, synthesis, implementation and HDL virtual prototype simulation validation of an interconnect network for a Hybrid Data/Command Driven Computer Architecture (HDCA) system. The HDCA is a single-chip shared memory multiprocessor architecture system. Various candidate processor-memory interconnect topologies that may meet the requirements of the HDCA system are studied and evaluated related to utilization within the HDCA system. It is determined that the Crossbar network topology best meets the HDCA system requirements and it is therefore used as the processormemory interconnect network of the HDCA system. The design capture, synthesis, implementation and HDL simulation is done in VHDL using XILINX ISE 6.2.3i and ModelSim 5.7g CAD softwares. The design is validated by individually testing against some possible test cases and then integrated into the HDCA system and validated against two different applications. The inclusion of crossbar switch in the HDCA architecture involved major modifications to the HDCA system and some minor changes in the design of the switch. Virtual Prototype testing of the HDCA executing applications when utilizing crossbar interconnect revealed proper functioning of the interconnect and HDCA. Inclusion of the interconnect into the HDCA now allows it to implement dynamic node level reconfigurability and multiple forking functionality.
36

Reconfigurable and Wideband Receiver Components for System-on-Chip Millimetre-Wave Radiometer Front-Ends

Reyaz, Shakila Bint January 2015 (has links)
This thesis presents solutions and studies related to the design of reconfigurable and wideband receiver circuits for system-on-chip (SoC) radiometer front-ends within the millimetre-wave (mm-wave) range. Whereas many of today’s mm-wave front-ends are bulky and costly due to having discrete RF components, single-chip receiver modules could potentially result in a wider use for emerging applications such as wireless communication, short range radar and passive imaging security sensors if realised with adequate performances and at a lower cost. Three main topics are considered in this thesis, monolithic integration of low-loss RF-MEMS (Dicke) switch networks and switched LNAs in MMIC/RFIC foundry processes, designs of SiGe wideband (IF) amplifier and broadband power detectors up to W-band (75-110 GHz). Low-loss and high isolation GaAs and SiGe RF-MEMS switch networks were designed and characterised for the 30-110 GHz range. A GaAs MEMS Dicke switch network has a measured minimum loss of 1 dB and maximum isolation of 19 dB at 70-96 GHz, respectively, making it a potential candidate in Dicke switched radiometer receivers. Furthermore, single-chip 30 GHz and W-band MEMS Dicke switched LNA designs have been realised for the first time in SiGe BiCMOS and GaAs mHEMT processes, respectively. For a targeted 94 GHz passive imaging application two different receiver topologies have been investigated based on direct-detection and direct-conversion (heterodyne) architectures. An optimised detector design fabricated in a 0.13 μm SiGe process achieves a more wideband input matching than earlier silicon W-band detectors and is competitive with reported III-V W-band detectors in terms of a higher responsivity and similar NEP. A SiGe 2-37 GHz high-gain differential (IF) amplifier design achieves a more wideband matching and an order of magnitude higher linearity than a recent single-ended SiGe LNA. The SiGe IF amplifier was integrated on-chip with a power detector in a 5-35 GHz IF section. Their broadband properties compared with other IF amplifier/detector RFICs, make them suitable for W-band down-conversion receivers with a larger pre-detection bandwidth and improved sensitivity. The experimental results successfully demonstrate the feasibility of the SiGe 5-35 GHz IF section for high performance SoC W-band radiometers using a more wideband heterodyne receiver architecture.
37

Software-centric and interaction-oriented system-on-chip verification.

Xu, Xiao Xi January 2009 (has links)
As the complexity of very-large-scale-integrated-circuits (VLSI) soars, the complexity of verifying them increases even faster. Design verification becomes the biggest bottleneck in VLSI design, consuming around 70% of the effort and time in a typical design cycle. The problem is even more severe as the system-on-chip (SoC) design paradigm is gaining popularity. Unfortunately, the development in verification techniques has not kept up with the growth of the design capability, and is being left further behind in the SoC era. In recent years, a new generation of hardware-modelling-languages alongside the best practices to use them have emerged and evolved in an attempt to productively build an intelligent stimulationobservation environment referred to as the test-bench. Ironically, as test-benches are becoming more powerful and sophisticated under these best practices known as verification methodologies, the overall verification approaches today are still officially described as ad hoc and experimental and are in great need of a methodological breakthrough. Our research was carried out to seek the desirable methodological breakthrough, and this thesis presents the research outcome: a novel and holistic methodology that brings an opportunity to address the SoC verification problems. Furthermore, our methodology is a solution completely independent of the underlying simulation technologies; therefore, it could extend its applicability into future VLSI designs. Our methodology presents two ideas. (a) We propose that system-level verification should resort to the SoC-native languages rather than the test-bench construction languages; the software native to the SoC should take more critical responsibilities than the test-benches. (b) We challenge the fundamental assumption that “objects-under-test” and “tests” are distinct entities; instead, they should be understood as one type of entities – the interactions; interactions, together with the interference between interactions, i.e., the parallelism and resource-competitions, should be treated as the focus in system-level verification. The above two ideas, namely, software-centric verification and interaction-oriented verification have yielded practical techniques. This thesis elaborates on these techniques, including the transfer-resource-graph based test-generation method targeting the parallelism, the coverage measures of the concurrency completeness using Petri-nets, the automation of the test-programs which can execute smartly in an event-driven manner, and a software observation mechanism that gives insights into the system-level behaviours. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1363926 / Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 2009
38

Integrierte Architektur für das Testen und Debuggen von System-on-Chips /

Ludewig, Ralf. January 2006 (has links)
Techn. Universiẗat, Diss., 2005--Darmstadt.
39

Automatisierte Qualifizierung und Auslieferung wiederverwendbarer Komponenten

Vörg, Andreas. January 2005 (has links) (PDF)
Universiẗat, Diss., 2005--Tübingen.
40

Abstrahierte Verhaltensbeschreibung zur frühzeitigen Berücksichtigung von Verbindungsstrukturen in einem erweiterten Entwicklungsablauf für integrierte Systeme

Tahedl, Markus January 2007 (has links)
Zugl.: Ulm, Univ., Diss., 2007

Page generated in 0.0343 seconds