Spelling suggestions: "subject:"5ystemic acquired resistance (SAR)"" "subject:"asystemic acquired resistance (SAR)""
1 |
Exploring the movement of DIR1 into the phloem during SAR and identification of genes upregulated during SAR inductionBrookman, Rowan 11 1900 (has links)
Plants respond to pathogens both locally at the site of infection, as well as systemically in distant leaves. Systemic Acquired Resistance (SAR) is an immune response that involves the long-distance transport of SAR signal via the phloem from the site of infection to distant, uninfected leaves to establish long-lasting resistance. The Arabidopsis thaliana Defective in Induced Resistance 1 (DIR1) protein, which is required for SAR, accesses the phloem during SAR for long-distance travel to systemic leaves, and is thought to be part of a SAR signal complex. However, many questions remain about the long-distance movement of DIR1 during SAR – including the cellular route travelled to reach the phloem and whether other proteins are required for DIR1 movement. Fluorescent fusion lines of DIR1 and the related protein DIR1-like were previously created were investigated as potential tools to trace the movement of DIR1/DIR1-like during SAR. Immunoblot analysis of leaf extracts from these DIR1/DIR1-like fluorescent fusion lines revealed no signal, indicating that no fusion protein was present in these lines and therefore, they were likely not useful as a tool for assessing the movement of DIR1/DIR1-like during SAR. Lipid Transfer Protein 2 (LTP2) is required for SAR and interacted with DIR1 in a yeast-two-hybrid assay. To investigate if LTP2 is required for DIR1 movement into the phloem and long-distance, DIR1 signal was investigated by immunoblotting of phloem exudates from SAR induced ltp2-1 mutant plants. The presence of DIR1 signal in phloem exudates of local ltp2-1 leaves but not distant ltp2-1 leaves suggested that LTP2 may be required for the long-distance movement of DIR1 during SAR, but not for DIR1 to enter the phloem in induced leaves.
Gene expression changes in the systemic, uninfected leaves are associated with the establishment of SAR, however, it remains less clear if there is a core set of genes important for SAR induction upregulated at the initial site of infection. To investigate this question, SAR was induced through differing treatments that first activated the PAMP-triggered immunity (PTI) pathway or Effector-triggered immunity (ETI) pathway. Common genes upregulated between all three SAR-inducing treatments were identified, revealing genes previously and currently under investigation by the Cameron lab, as well as genes that represent candidates for possible future studies. / Thesis / Master of Science (MSc)
|
2 |
Hormone Signaling: Current Perspectives on the Roles of Salicylic Acid and Its Derivatives in PlantsKumar, Dhirendra, Haq, Imdadul, Chapagai, Danda, Tripathi, Diwaker, Donald, David, Hossain, Mir, Devaiah, Shivakumar 14 October 2015 (has links)
Salicylic acid (SA) is an important plant hormone with a wide range of effects on plant growth and metabolism. Plants lacking SA exhibit enhanced susceptibility to pathogens. SA plays important signaling roles in resistance against biotrophic and hemi- biotrophic phytopathogens. It is synthesized in plastids along two pathways, one involving phenylalanine ammonia lyase (PAL) and the other isochorismate synthase (ICS). In Arabidopsis , during immune response most SA is synthesized through the ICS-dependent pathway, but clearly an ICS-independent pathway also exists. Several SA effector proteins have been identified and characterized which mediate downstream SA signaling. This includes SABP, a catalase, SABP2, a methyl salicylate esterase, SABP3, a carbonic anhydrase, NPR1 (nonexpressor of pathogenesis-related 1), NPR3 (a NPR1 paralog), and NPR4 (another NPR1 paralog). NPR3 and NPR4 regulate the turnover of NPR1, a process which plays a key role in activating defense gene expression. The role of SA in abiotic stress signaling is gradually becoming clearer. Various components of SA signaling in biotic stress also appear to impact abiotic stress signaling.
|
3 |
Biocontrol Fungi, Volatile Organic Compounds and Chitosan for Banana Pest Sustainable ManagementLozano-Soria, Ana 10 March 2023 (has links)
El objetivo de esta Tesis Doctoral es estudiar diferentes herramientas para el manejo de plagas y enfermedades del cultivo de la platanera. Entre las herramientas que vamos a desarrollar, se van a analizar los compuestos orgánicos volátiles (COVs) fúngicos derivados de hongos entomopatógenos (HE) y nematófagos, como fuente de metabolitos con actividad antagónica contra el picudo negro (PN) de la platanera, Cosmopolites sordidus, para su control y manejo en el campo. Así mismo, vamos a estudiar las respuestas de cultivares de plataneras a quitosano, un polisacárido biodegradable, para evaluar su posible uso en el campo como estimulante y protector de las plantas frente a plagas y patógenos, como Fusarium oxysporum f. sp. cubense. El conjunto de capítulos de esta tesis pretende sentar las bases de una estrategia de manejo sostenible de plagas y enfermedades del cultivo de la platanera, basada en el uso de COVs derivados de hongos presentes de forma natural en los cultivos, en combinación con la suplementación de quitosano en el riego, para un efecto de protección y activación de las defensas de las plataneras antes de cualquier infección de plagas y/o enfermedades. El objetivo principal de esta Tesis Doctoral es encontrar nuevas fórmulas para la gestión integrada de plagas como Cosmopolites sordidus y enfermedades de la platanera en condiciones de campo. En esta Tesis Doctoral hemos ideado enfoques sostenibles para la gestión de las plagas y enfermedades de las plataneras. Nuestros objetivos son: a) Cosmopolites sordidus (picudo negro de la platanera, PN), la principal plaga de los cultivos de plátano y, b) el hongo del marchitamiento Fusarium oxysporum f. sp. cubense Raza Tropical 4 (FocTR4), agente causante de una nueva variante extremadamente virulenta de la enfermedad del “Mal de Panamá”, que se está extendiendo rápidamente por todo el mundo. Nuestras herramientas de gestión sostenible son: a) los hongos entomopatógenos (HE, conocidos por su uso como agentes de control biológico, ACBs) aislados de campos comerciales de plátanos, b) sus compuestos orgánicos volátiles (COVs) y, c) el quitosano, un compuesto biodegradable y elicitor de la inmunidad de las plantas con actividad antimicrobiana. Damos evidencia de que los COVs de los hongos agentes de control biológico son repelentes del PN. Pueden utilizarse en los cultivos de platanera mediante estrategias de push and pull para gestionar la plaga de forma sostenible. El quitosano puede utilizarse en el riego para prevenir las defensas de la platanera local y sistémicamente. Por lo tanto, este polímero, con probada actividad antimicrobiana frente a otros patógenos de marchitamiento de Fusarium spp., podría utilizarse contra la actual pandemia en las plataneras causada por FocTR4. La capacidad de inducir reguladores del crecimiento de las plantas sostiene también el papel fertilizante del quitosano. La inducción de compuestos relacionados con la respuesta sistémica adquirida (RSA) hace que el riego con quitosano sea una herramienta para manejar también las plagas de las plataneras sobre el suelo (PN) y las enfermedades (Sigatoka). De esta manera, los COVs y el quitosano podrían ayudar a reducir el uso de agroquímicos tóxicos en los cultivos de platanera en todo el mundo.
|
Page generated in 0.1046 seconds