• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational development of regulatory gene set networks for systems biology applications

Suphavilai, Chayaporn January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In systems biology study, biological networks were used to gain insights into biological systems. While the traditional approach to studying biological networks is based on the identification of interactions among genes or the identification of a gene set ranking according to differentially expressed gene lists, little is known about interactions between higher order biological systems, a network of gene sets. Several types of gene set network have been proposed including co-membership, linkage, and co-enrichment human gene set networks. However, to our knowledge, none of them contains directionality information. Therefore, in this study we proposed a method to construct a regulatory gene set network, a directed network, which reveals novel relationships among gene sets. A regulatory gene set network was constructed by using publicly available gene regulation data. A directed edge in regulatory gene set networks represents a regulatory relationship from one gene set to the other gene set. A regulatory gene set network was compared with another type of gene set network to show that the regulatory network provides additional information. In order to show that a regulatory gene set network is useful for understand the underlying mechanism of a disease, an Alzheimer's disease (AD) regulatory gene set network was constructed. In addition, we developed Pathway and Annotated Gene-set Electronic Repository (PAGER), an online systems biology tool for constructing and visualizing gene and gene set networks from multiple gene set collections. PAGER is available at http://discern.uits.iu.edu:8340/PAGER/. Global regulatory and global co-membership gene set networks were pre-computed. PAGER contains 166,489 gene sets, 92,108,741 co-membership edges, 697,221,810 regulatory edges, 44,188 genes, 651,586 unique gene regulations, and 650,160 unique gene interactions. PAGER provided several unique features including constructing regulatory gene set networks, generating expanded gene set networks, and constructing gene networks within a gene set. However, tissue specific or disease specific information was not considered in the disease specific network constructing process, so it might not have high accuracy of presenting the high level relationship among gene sets in the disease context. Therefore, our framework can be improved by collecting higher resolution data, such as tissue specific and disease specific gene regulations and gene sets. In addition, experimental gene expression data can be applied to add more information to the gene set network. For the current version of PAGER, the size of gene and gene set networks are limited to 100 nodes due to browser memory constraint. Our future plans is integrating internal gene or proteins interactions inside pathways in order to support future systems biology study.
2

Context specific text mining for annotating protein interactions with experimental evidence

Pandit, Yogesh 03 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Proteins are the building blocks in a biological system. They interact with other proteins to make unique biological phenomenon. Protein-protein interactions play a valuable role in understanding the molecular mechanisms occurring in any biological system. Protein interaction databases are a rich source on protein interaction related information. They gather large amounts of information from published literature to enrich their data. Expert curators put in most of these efforts manually. The amount of accessible and publicly available literature is growing very rapidly. Manual annotation is a time consuming process. And with the rate at which available information is growing, it cannot be dealt with only manual curation. There need to be tools to process this huge amounts of data to bring out valuable gist than can help curators proceed faster. In case of extracting protein-protein interaction evidences from literature, just a mere mention of a certain protein by look-up approaches cannot help validate the interaction. Supporting protein interaction information with experimental evidence can help this cause. In this study, we are applying machine learning based classification techniques to classify and given protein interaction related document into an interaction detection method. We use biological attributes and experimental factors, different combination of which define any particular interaction detection method. Then using predicted detection methods, proteins identified using named entity recognition techniques and decomposing the parts-of-speech composition we search for sentences with experimental evidence for a protein-protein interaction. We report an accuracy of 75.1% with a F-score of 47.6% on a dataset containing 2035 training documents and 300 test documents.

Page generated in 0.0639 seconds