• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 46
  • 46
  • 14
  • 13
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Load flow feasibility under extreme contingencies

Khosravi-Dehkordi, Iman. January 2007 (has links)
No description available.
12

Load flow feasibility under extreme contingencies

Khosravi-Dehkordi, Iman. January 2007 (has links)
This thesis examines the problem of load flow feasibility, in other words, the conditions under which a power network characterized by the load flow equations has a steady-state solution. In this thesis, we are particularly interested in load flow feasibility in the presence of extreme contingencies such as the outage of several transmission lines. / Denoting the load flow equations by z = f(x) where z is the vector of specified injections (the real and reactive bus demands, the specified real power bus generations and the specified bus voltage levels), the question addressed is whether there exists a real solution x to z = f( x) where x is the vector of unknown bus voltage magnitudes at load buses and unknown bus voltage phase angles at all buses but the reference bus. Attacking this problem via conventional load flow algorithms has a major drawback, principally the fact that such algorithms do not converge when the load flow injections z define or are close to defining an infeasible load flow. In such cases, lack of convergence may be due to load flow infeasibility or simply to the ill-conditioning of the load flow Jacobian matrix. / This thesis therefore makes use of the method of supporting hyperplanes to characterize the load flow feasibility region, defined as the set the injections z for which there exists a real solution x to the load flow equations. Supporting hyperplanes allow us to calculate the so-called load flow feasibility margin, which determines whether a given injection is feasible or not as well as measuring how close the injection is to the feasibility boundary. This requires solving a generalized eigenvalue problem and a corresponding optimization for the closest feasible boundary point to the given injection. / The effect of extreme network contingencies on the feasibility of a given injection is examined for two main cases: those contingencies that affect the feasibility region such as line outages and those that change the given injection itself such as an increase in VAR demand or the loss of a generator. The results show that the hyperplane method is a powerful tool for analyzing the effect of extreme contingencies on the feasibility of a power network.
13

A reliability study of the RFID technology

Ng, Ling Siew. January 2006 (has links) (PDF)
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, December 2006. / Thesis Advisor(s): Ha, Tri T. ; Su, Weilian. "December 2006." Description based on title screen as viewed on March 12, 2008. Includes bibliographical references (p. 55-56). Also available in print.
14

On fault tolerance, performance, and reliability for wireless and sensor networks. / CUHK electronic theses & dissertations collection

January 2005 (has links)
Finally, to obtain a long network lifetime without sacrificing crucial aspects of quality of service (area coverage, sensing reliability, and network connectivity) in wireless sensor networks, we present sensibility-based sleeping configuration protocols (SSCPs) with two sensing models: Boolean sensing model (BSM) and collaborative sensing model (CSM). (Abstract shortened by UMI.) / Furthermore, we extend the traditional reliability analysis. Wireless networks inherit the unique handoff characteristic which leads to different communication structures of various types with a number of components and links. Therefore, the traditional definition of two-terminal reliability is not applicable anymore. We propose a new term, end-to-end mobile reliability, to integrate those different communication structures into one metric, which includes not only failure parameters but also service parameters. Nevertheless, it is still a monotonically decreasing function of time. With the proposed end-to-end mobile reliability, we could identify the reliability importance of imperfect components in wireless networks. / The emerging mobile wireless environment poses exciting challenges for distributed fault-tolerant (FT) computing. This thesis develops a message logging and recovery protocol on the top of Wireless CORBA to complement FT-CORBA specified for wired networks. It employs the storage available at access bridge (AB) as the stable storage for logging messages and saving checkpoints on behalf of mobile hosts (MHs). Our approach engages both the quasi-sender-based and the receiver-based message logging techniques and conducts seamless handoff in the presence of failures. / Then we extend the analysis of the program execution time without and with checkpointing in the presence of MH failures from wired to wireless networks. Due to the underlying message-passing communication mechanism, we employ the number of received computational messages instead of time to indicate the completion of program execution at an MH. Handoff is another distinct factor that should be taken into consideration in mobile wireless environments. Three checkpointing strategies, deterministic, random, and time-based checkpointing, are investigated. In our approach, failures may occur during checkpointing and recovery periods. / Chen Xinyu. / "June 2005." / Adviser: Michael R. Lyu. / Source: Dissertation Abstracts International, Volume: 67-07, Section: B, page: 3889. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 180-198). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307.
15

Reliability and fault tolerance modelling of multiprocessor systems

Valdivia, Roberto Abraham January 1989 (has links)
Reliability evaluation by analytic modelling constitute an important issue of designing a reliable multiprocessor system. In this thesis, a model for reliability and fault tolerance analysis of the interconnection network is presented, based on graph theory. Reliability and fault tolerance are considered as deterministic and probabilistic measures of connectivity. Exact techniques for reliability evaluation fail for large multiprocessor systems because of the enormous computational resources required. Therefore, approximation techniques have to be used. Three approaches are proposed, the first by simplifying the symbolic expression of reliability; the other two by applying a hierarchical decomposition to the system. All these methods give results close to those obtained by exact techniques.
16

Integrated Global Positioning System and inertial navigation system integrity monitor performance

Harris, William M. January 2003 (has links)
Thesis (M.S.)--Ohio University, August, 2003. / Title from PDF t.p. Includes bibliographical references (leaves 33-34).
17

Optimization methods for power grid reliability

Harnett, Sean R. January 2016 (has links)
This dissertation focuses on two specific problems related to the reliability of the modern power grid. The first part investigates the economic dispatch problem with uncertain power sources. The classic economic dispatch problem seeks generator power output levels that meet demand most efficiently; we add risk-awareness to this by explicitly modeling the uncertainty of intermittent power sources using chance-constrained optimization and incorporating the chance constraints into the standard optimal power flow framework. The result is a dispatch of power which is substantially more robust to random fluctuations with only a small increase in economic cost. Furthermore, it uses an algorithm which is only moderately slower than the conventional practice. The second part investigates “the power grid attack problem”: aiming to maximize disruption to the grid, how should an attacker distribute a budget of “damage” across the power lines? We formulate it as a continuous problem, which bypasses the combinatorial explosion of a discrete formulation and allows for interesting attacks containing lines that are only partially damaged rather than completely removed. The result of our solution to the attack problem can provide helpful information to grid planners seeking to improve the resilience of the power grid to outages and disturbances. Both parts of this dissertation include extensive experimental results on a number of cases, including many realistic large-scale instances.
18

Analysis of high voltage current transformer under deteriorating and failed insulation. / Analysis of high voltage current transformer under deteriorating and failed insulation.

Mahlasela, Vusumuzi Samuel. January 2006 (has links)
Data pertaining to the number of failed high voltage current transformers installed in / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2006. / Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2006.
19

Safety system design optimisation

Pattison, Rachel Lesley January 2000 (has links)
This thesis investigates the efficiency of a design optimisation scheme that is appropriate for systems which require a high likelihood of functioning on demand. Traditional approaches to the design of safety critical systems follow the preliminary design, analysis, appraisal and redesign stages until what is regarded as an acceptable design is achieved. For safety systems whose failure could result in loss of life it is imperative that the best use of the available resources is made and a system which is optimal, not just adequate, is produced. The object of the design optimisation problem is to minimise system unavailability through manipulation of the design variables, such that limitations placed on them by constraints are not violated. Commonly, with mathematical optimisation problem; there will be an explicit objective function which defines how the characteristic to be minimised is related to the variables. As regards the safety system problem, an explicit objective function cannot be formulated, and as such, system performance is assessed using the fault tree method. By the use of house events a single fault tree is constructed to represent the failure causes of each potential design to overcome the time consuming task of constructing a fault tree for each design investigated during the optimisation procedure. Once the fault tree has been constructed for the design in question it is converted to a BDD for analysis. A genetic algorithm is first employed to perform the system optimisation, where the practicality of this approach is demonstrated initially through application to a High-Integrity Protection System (HIPS) and subsequently a more complex Firewater Deluge System (FDS). An alternative optimisation scheme achieves the final design specification by solving a sequence of optimisation problems. Each of these problems are defined by assuming some form of the objective function and specifying a sub-region of the design space over which this function will be representative of the system unavailability. The thesis concludes with attention to various optimisation techniques, which possess features able to address difficulties in the optimisation of safety critical systems. Specifically, consideration is given to the use of a statistically designed experiment and a logical search approach.
20

Scheduling for composite event detection in wireless sensor networks

Unknown Date (has links)
Wireless sensor networks are used in areas that are inaccessible, inhospitable or for continuous monitoring. The main use of such networks is for event detection. Event detection is used to monitor a particular environment for an event such as fire or flooding. Composite event detection is used to break down the detection of the event into the specific conditions that need to be present for the event to occur. Using this method, each sensor node does not need to carry every sensing component necessary to detect the event. Since energy efficiency is important the sensor nodes need to be scheduled so that they consume [sic] consume as little energy as possible to extend the network lifetime. In this thesis, a solution to the sensor Scheduling for Composite Event Detection (SCED) problem will be presented as a way to improve the network lifetime when using composite event detection. / by Arny I. Ambrose. / Thesis (M.S.C.S.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.

Page generated in 0.0612 seconds