1 |
Development and integration of silicon-germanium front-end electronics for active phased-array antennasCoen, Christopher T. 05 July 2012 (has links)
The research presented in this thesis leverages silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) technology to develop microwave front-end electronics for active phased-array antennas. The highly integrated electronics will reduce costs and improve the feasibility of snow measurements from airborne and space-borne platforms. Chapter 1 presents the motivation of this research, focusing on the technological needs of snow measurement missions. The fundamentals and benefits of SiGe HBTs and phased-array antennas for these missions are discussed as well. Chapter 2 discusses SiGe power amplifier design considerations for radar systems. Basic power amplifier design concepts, power limitations in SiGe HBTs, and techniques for increasing the output power of SiGe HBT PAs are reviewed. Chapter 3 presents the design and characterization of a robust medium power X-band SiGe power amplifier for integration into a SiGe transmit/receive module. The PA design process applies the concepts presented in Chapter 2. A detailed investigation into measurement-to-simulation discrepancies is outlined as well. Chapter 4 discusses the development and characterization of a single-chip X-band SiGe T/R module for integration into a very thin, lightweight active phased array antenna panel. The system-on-package antenna combines the high performance and integration potential of SiGe technologies with advanced substrates and packaging techniques to develop a high performance scalable antenna panel using relatively low-cost materials and silicon-based electronics. The antenna panel presented in this chapter will enable airborne SCLP measurements and advance the technology towards an eventual space-based SCLP measurement instrument that will satisfy a critical Earth science need. Finally, Chapter 5 provides concluding remarks and discusses future research directions.
|
Page generated in 0.0376 seconds