• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 13
  • 13
  • 13
  • 8
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

T Tauri stars : mass accretion and X-ray emission /

Gregory, Scott G. January 2007 (has links)
Thesis (Ph.D.) - University of St Andrews, May 2007.
2

THE EFFECT OF LINE EMISSION UPON THE B-V COLORS OF T TAURI OBJECTS

Aveni, Anthony F. January 1965 (has links)
No description available.
3

An observational study of accretion processes in T Tauri Stars /

Stempels, Henricus Cornelis, January 2003 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2003. / Härtill 5 uppsatser.
4

The effect of high-mass stars on low-mass star formation

Pozzo, Monica January 2001 (has links)
No description available.
5

Accretion variability in young, low-mass stellar systems

Robinson, Connor Edward 11 February 2021 (has links)
Through the study of accretion onto the young, low-mass stars known as T Tauri Stars (TTS), we can better understand the formation of our solar system. Gas is funneled along stellar magnetic field lines into magnetospheric accretion columns where it reaches free-fall velocities and shocks at the stellar surface, generating emission that carries information about the inner regions of the protoplanetary disk. Accretion is a variable process, with characteristic timescales ranging from minutes to years. In this dissertation, I use simulations, models, and observations to provide insight into the driving forces of mass accretion rate variability on timescales of minutes to weeks and the structure of the inner disk. Using hydrodynamic simulations, I find that steady-state, transonic accretion occurs naturally in the absence of any other source of variability. If the density in the inner disk varies smoothly in time with roughly day-long time-scales (e.g., due to turbulence), traveling shocks develop within the accretion column, which lead to rapid increases in the accretion luminosity followed by slower declines. I present the largest Hubble Space Telescope (HST) spectral variability study of TTS to date. I infer mass accretion rates and accretion column surface coverage using newly updated accretion shock models. I find typical changes in the mass accretion rate of order 10% and moderate changes in the surface coverage for most objects in the sample on week timescales. Individual peculiar epochs are further discussed. I find that the inner disk is inhomogeneous and that dust may survive near the magnetic truncation radius. Next, I link 2-minute cadence light curves from the Transiting Exoplanet Survey Satellite (TESS) to accretion using ground-based U-band photometry. Additional HST observations for one target enable more detailed connections between TESS light curves and accretion. I also use the TESS light curves to identify rotation periods and patterns of quasi-periodicity. Finally, I connect hydrodynamic simulations, accretion shock models, and stellar rotation to predict signatures of a turbulent inner disk. I generate light curves from these models to make comparisons to previous month-long photometric monitoring surveys of TTS using metrics of light curve symmetry and periodicity.
6

T Tauri stars : mass accretion and X-ray emission

Gregory, Scott G. January 2007 (has links)
I develop the first magnetospheric accretion model to take account of the observed complexity of T Tauri magnetic fields, and the influence of stellar coronae. It is now accepted that accretion onto classical T Tauri stars is controlled by the stellar magnetosphere, yet to date the majority of accretion models have assumed that the stellar magnetic field is dipolar. By considering a simple steady state accretion model with both dipolar and complex magnetic fields I find a correlation between mass accretion rate and stellar mass of the form M[dot above] proportional to M[asterisk subscript, alpha superscript], with my results consistent within observed scatter. For any particular stellar mass there can be several orders of magnitude difference in the mass accretion rate, with accretion filling factors of a few percent. I demonstrate that the field geometry has a significant effect in controlling the location and distribution of hot spots, formed on the stellar surface from the high velocity impact of accreting material. I find that hot spots are often at mid to low latitudes, in contrast to what is expected for accretion to dipolar fields, and that particularly for higher mass stars, accreting material is predominantly carried by open field lines. Material accreting onto stars with fields that have a realistic degree of complexity does so with a distribution of in-fall speeds. I have also modelled the rotational modulation of X-ray emission from T Tauri stars assuming that they have isothermal, magnetically confined coronae. By extrapolating from surface magnetograms I find that T Tauri coronae are compact and clumpy, such that rotational modulation arises from X-ray emitting regions being eclipsed as the star rotates. Emitting regions are close to the stellar surface and inhomogeneously distributed about the star. However some regions of the stellar surface, which contain wind bearing open field lines, are dark in X-rays. From simulated X-ray light curves, obtained using stellar parameters from the Chandra Orion Ultradeep Project, I calculate X-ray periods and make comparisons with optically determined rotation periods. I find that X-ray periods are typically equal to, or are half of, the optical periods. Further, I find that X-ray periods are dependent upon the stellar inclination, but that the ratio of X-ray to optical period is independent of stellar mass and radius. I also present some results that show that the largest flares detected on T Tauri stars may occur inside extended magnetic structures arising from the reconnection of open field lines within the disc. I am currently working to establish whether such large field line loops can remain closed for a long enough time to fill with plasma before being torn open by the differential rotation between the star and the disc. Finally I discuss the current limitations of the model and suggest future developments and new avenues of research.
7

T Tauri stars : Optical lucky imaging polarimetry of HL and XZ Tau

Persson, Magnus January 2010 (has links)
<p>Optical lucky imaging polarimetry of HL Tau and XZ Tau in the Taurus-Auriga molecular cloud was carried out with the instrument PolCor at the Nordic Optical Telescope (NOT). The results show that in both the V- and R-band HL Tau show centrosymmetric structures of the polarization angle in its northeastern outflow lobe (degree of polarization ~30%). A C-shaped structure is detected which is also present at near-IR wavelengths (Murakawa, 2008), and higher resolution optical images (Stapelfeldt, 1995). The position angle of the outflow is 47.5+-7.5 degrees, which coincides with previous measurements and the core polarization is observed to decrease with wavelength and a few scenarios are reviewed. Measuring the outflow witdh versus distance and wavelength shows that the longer wavelengths scatter deeper within the cavity wall of the outflow. In XZ Tau the binary is partially resolved, it is indicated by an elongated intensity distribution. The polarization of the parental cloud is detected in XZ Tau through the dichroic extinction of starlight. Lucky imaging at the NOT is a great way of increasing the resolution, shifting increases the sharpness by 0.1 asec and selection the sharpest frames can increase the seeing with 0.4 asec, perhaps more during better conditions.</p>
8

T Tauri stars : Optical lucky imaging polarimetry of HL and XZ Tau

Persson, Magnus January 2010 (has links)
Optical lucky imaging polarimetry of HL Tau and XZ Tau in the Taurus-Auriga molecular cloud was carried out with the instrument PolCor at the Nordic Optical Telescope (NOT). The results show that in both the V- and R-band HL Tau show centrosymmetric structures of the polarization angle in its northeastern outflow lobe (degree of polarization ~30%). A C-shaped structure is detected which is also present at near-IR wavelengths (Murakawa, 2008), and higher resolution optical images (Stapelfeldt, 1995). The position angle of the outflow is 47.5+-7.5 degrees, which coincides with previous measurements and the core polarization is observed to decrease with wavelength and a few scenarios are reviewed. Measuring the outflow witdh versus distance and wavelength shows that the longer wavelengths scatter deeper within the cavity wall of the outflow. In XZ Tau the binary is partially resolved, it is indicated by an elongated intensity distribution. The polarization of the parental cloud is detected in XZ Tau through the dichroic extinction of starlight. Lucky imaging at the NOT is a great way of increasing the resolution, shifting increases the sharpness by 0.1 asec and selection the sharpest frames can increase the seeing with 0.4 asec, perhaps more during better conditions.
9

An Observational Study of Accretion Processes in T Tauri Stars

Stempels, Henricus Cornelis January 2003 (has links)
<p>This thesis is a detailed observational study of the accretion processes in T Tauri stars (TTS). The interaction between the central star, the circumstellar disk and the magnetic field gives rise to a wide range of features in the spectra of TTS. The current picture of TTS is based on rather simple models assuming that accretion is a homogeneous and axisymmetric process. Although these models have been successful in explaining some observational signatures of TTS such as the shape of emission lines, the static nature of these models makes them unsuitable for describing the strong variability of the veiling spectrum and emission lines of TTS. An improved understanding of this variability is of key importance to study the dynamic processes related to the accretion flow and the winds.</p><p>This study is based on a set of high-quality spectroscopic observations with the UVES spectrograph at the 8-m VLT in 2000 and 2002. These spectra, with exposure times as short as 10-15 minutes, have high spectral resolution and high signal-to-noise ratios and cover a large part of the optical wavelength range. From this dataset we determine the basic physical parameters of several TTS and model their photospheres. These models then serve as a basis for a detailed investigation of variations of the veiling continuum and line emission. We confirm that the level of veiling correlates with some of the strongest emission lines and that coherent changes in accretion occur on a timescale of a few hours, comparable to the free-fall time from the disk to the star. From the properties of the emission lines formed close to the central star and in the stellar wind we derive restrictions on the geometry of the observed systems.</p><p>Because the intrinsic axial symmetry of a single star makes it almost impossible to disentangle rotational modulation from inhomogeneity and axial asymmetry of the accretion flow, we study a series of spectra of a close spectroscopic binary at different orbital phases and derive the 3D structure of flows between the disk and the star. Finally, we calculate the profiles of hydrogen emission lines by iteratively solving 3D NLTE radiative transfer in a state-of-the-art magnetospheric model.</p>
10

An Observational Study of Accretion Processes in T Tauri Stars

Stempels, Henricus Cornelis January 2003 (has links)
This thesis is a detailed observational study of the accretion processes in T Tauri stars (TTS). The interaction between the central star, the circumstellar disk and the magnetic field gives rise to a wide range of features in the spectra of TTS. The current picture of TTS is based on rather simple models assuming that accretion is a homogeneous and axisymmetric process. Although these models have been successful in explaining some observational signatures of TTS such as the shape of emission lines, the static nature of these models makes them unsuitable for describing the strong variability of the veiling spectrum and emission lines of TTS. An improved understanding of this variability is of key importance to study the dynamic processes related to the accretion flow and the winds. This study is based on a set of high-quality spectroscopic observations with the UVES spectrograph at the 8-m VLT in 2000 and 2002. These spectra, with exposure times as short as 10-15 minutes, have high spectral resolution and high signal-to-noise ratios and cover a large part of the optical wavelength range. From this dataset we determine the basic physical parameters of several TTS and model their photospheres. These models then serve as a basis for a detailed investigation of variations of the veiling continuum and line emission. We confirm that the level of veiling correlates with some of the strongest emission lines and that coherent changes in accretion occur on a timescale of a few hours, comparable to the free-fall time from the disk to the star. From the properties of the emission lines formed close to the central star and in the stellar wind we derive restrictions on the geometry of the observed systems. Because the intrinsic axial symmetry of a single star makes it almost impossible to disentangle rotational modulation from inhomogeneity and axial asymmetry of the accretion flow, we study a series of spectra of a close spectroscopic binary at different orbital phases and derive the 3D structure of flows between the disk and the star. Finally, we calculate the profiles of hydrogen emission lines by iteratively solving 3D NLTE radiative transfer in a state-of-the-art magnetospheric model.

Page generated in 0.087 seconds