• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 695
  • 145
  • 92
  • 82
  • 37
  • 17
  • 15
  • 11
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 1344
  • 1344
  • 300
  • 219
  • 214
  • 210
  • 186
  • 146
  • 141
  • 117
  • 111
  • 106
  • 101
  • 98
  • 98
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Studies of the regulatory function of L2a in mouse CD8 gene expression

Yao, Xin, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
172

Uncovering the mechanism of IL-4-mediated T cell survival

Moscibrocki, Cathleen M. 06 June 2001 (has links)
Graduation date: 2002
173

Investigation of the mechanism of 3,3',4,4',5,5'-hexachlorobiphenyl-induced suppression of cytotoxic T lymphocyte activity in C57B1/6 mice : endocrine and cytokine dysregulation

DeKrey, Gregory K. 19 September 1994 (has links)
Graduation date: 1995
174

X-Linked FOXP3 & OTC in immune tolerance and autoimmunity

Chang, Xing. January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Available online via OhioLINK's ETD Center; full text release delayed at author's request until 2007 Jun 1
175

IL-6-engineered DC stimulate efficient antitumor immunity via enhanced and prolonged T cell cytotoxicity and survival

Zhang, Bei 06 March 2009
Dendritic cells (DCs) modified by some immunomodulatory genes can stimulate a strong antitumor immunity and improve the treatment of tumor cells on the condition that the sources of tumor-associated antigens (TAAs) are available. IL-6, a pleotropic cytokine, has been found to inhibit CD4+25+ regulatory T (Treg)-cell-mediated immune suppression and decrease activation-induced cell death (AICD) without interfering the process of T-cell activation. To enhance DC-based cancer vaccine, we engineered DCs to express transgene IL-6.<p> We constructed a fiber-modified recombinant adenovirus vector AdVIL-6 expressing IL-6, infected DCs with AdVIL-6, and then investigated the efficacy of antitumor immunity induced by vaccination with DCs engineered to express IL-6 transgene. We demonstrated that DCs infected with the recombinant adenovirus AdVIL-6 induced DC maturation by up-regulation of the expression of MHC class U (Iab), CD40, CD54 and CD80 expression. We also demonstrated that vaccination of OVA-pulsed AdVIL-6-infected DCs (DCOVA/AdVIL-6) was able to stimulate a stronger OVA-specific effector CD8+ cytotoxic T lymphocyte (CTL) response than vaccination with the control virus AdVpLpA-infected DCs (DCOVA/AdVpLpA). More importantly, vaccination of mice with DCOVA/AdVpLpA could protect 100% mice from intravenous (i.v.) challenge of a low dose (0.5~105 cells per mouse, 8/8 mice protected) of OVA-expressing BL6-10OVA tumor cells, but only 63% mice from i.v. challenge of a high dose (1~105 cells per mouse, 5/8 mice protected) of BL6-10OVA tumor cells. However, vaccination of DCOVA/AdVIL-6 induced an augmented antitumor immunity in vivo by complete protection of mice (8/8) from challenge of both low and high doses of BL6-10OVA tumor cells.<p> To study the immune mechanism underlying the result of IL-6 engineered-DC vaccine, we generated the DCOVA/AdVIL-6-activated OTI CD8+ T cells and DCOVA/AdVpLpA-activated OTI CD8+ T cells. We demonstrated that DCOVA/AdVIL-6-activated CD8+ T cells displayed a higher level of CD62L, FasL and perforin than DCOVA/AdVpLpA-activated CD8+ T cells. DCOVA/AdVIL-6-activated CD8+ T cells had a prolonged T cell survival after they were transferred into C57BL/6 mice. Furthermore, the results of the animal study showed that 100% of mice bearing OVA-expressing EG7 tumors (8mm in diameter, 8 mice per group) were tumor-free after they were i.v. treated with DCOVA/AdVIL-6-activated CD8+ T cells (2~106 cells per mouse). However, the control DCOVA/AdVpLpA-activated CD8+ T cells failed in eradication of EG7 tumors in all 8/8 mice.<p> Taken together, Adenovirus-mediated IL-6 transgene engineered DC vaccine stimulates efficient CD8+ T cell responses and antitumor immunity via enhanced T cell cytotoxicity and prolonged T cell survival. DCs engineered to express IL-6 by adenovirus-mediated IL-6 gene transfer may offer a new strategy in production of DC cancer vaccines.
176

IL-6-engineered DC stimulate efficient antitumor immunity via enhanced and prolonged T cell cytotoxicity and survival

Zhang, Bei 06 March 2009 (has links)
Dendritic cells (DCs) modified by some immunomodulatory genes can stimulate a strong antitumor immunity and improve the treatment of tumor cells on the condition that the sources of tumor-associated antigens (TAAs) are available. IL-6, a pleotropic cytokine, has been found to inhibit CD4+25+ regulatory T (Treg)-cell-mediated immune suppression and decrease activation-induced cell death (AICD) without interfering the process of T-cell activation. To enhance DC-based cancer vaccine, we engineered DCs to express transgene IL-6.<p> We constructed a fiber-modified recombinant adenovirus vector AdVIL-6 expressing IL-6, infected DCs with AdVIL-6, and then investigated the efficacy of antitumor immunity induced by vaccination with DCs engineered to express IL-6 transgene. We demonstrated that DCs infected with the recombinant adenovirus AdVIL-6 induced DC maturation by up-regulation of the expression of MHC class U (Iab), CD40, CD54 and CD80 expression. We also demonstrated that vaccination of OVA-pulsed AdVIL-6-infected DCs (DCOVA/AdVIL-6) was able to stimulate a stronger OVA-specific effector CD8+ cytotoxic T lymphocyte (CTL) response than vaccination with the control virus AdVpLpA-infected DCs (DCOVA/AdVpLpA). More importantly, vaccination of mice with DCOVA/AdVpLpA could protect 100% mice from intravenous (i.v.) challenge of a low dose (0.5~105 cells per mouse, 8/8 mice protected) of OVA-expressing BL6-10OVA tumor cells, but only 63% mice from i.v. challenge of a high dose (1~105 cells per mouse, 5/8 mice protected) of BL6-10OVA tumor cells. However, vaccination of DCOVA/AdVIL-6 induced an augmented antitumor immunity in vivo by complete protection of mice (8/8) from challenge of both low and high doses of BL6-10OVA tumor cells.<p> To study the immune mechanism underlying the result of IL-6 engineered-DC vaccine, we generated the DCOVA/AdVIL-6-activated OTI CD8+ T cells and DCOVA/AdVpLpA-activated OTI CD8+ T cells. We demonstrated that DCOVA/AdVIL-6-activated CD8+ T cells displayed a higher level of CD62L, FasL and perforin than DCOVA/AdVpLpA-activated CD8+ T cells. DCOVA/AdVIL-6-activated CD8+ T cells had a prolonged T cell survival after they were transferred into C57BL/6 mice. Furthermore, the results of the animal study showed that 100% of mice bearing OVA-expressing EG7 tumors (8mm in diameter, 8 mice per group) were tumor-free after they were i.v. treated with DCOVA/AdVIL-6-activated CD8+ T cells (2~106 cells per mouse). However, the control DCOVA/AdVpLpA-activated CD8+ T cells failed in eradication of EG7 tumors in all 8/8 mice.<p> Taken together, Adenovirus-mediated IL-6 transgene engineered DC vaccine stimulates efficient CD8+ T cell responses and antitumor immunity via enhanced T cell cytotoxicity and prolonged T cell survival. DCs engineered to express IL-6 by adenovirus-mediated IL-6 gene transfer may offer a new strategy in production of DC cancer vaccines.
177

Studies of a matrix attachment region (MAR) adjacent to the mouse CD8a gene, and the MAR-binding proteins, SATB1 and CDP /

Rojas Noguera, Ingrid Cecilia, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 186-201). Available also in a digital version from Dissertation Abstracts.
178

Regulators of G-protein signaling, RGS13 and RGS16, are associated with CXCL12-mediated CD4+ T cell migration /

Xia, Lijin, January 2008 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Chemistry and Biochemistry, 2008. / Includes bibliographical references (p. 49-53).
179

TRAF4 and CD30/TRAF2 in normal T cell function /

Harlin, Helena. January 2001 (has links)
Thesis (Ph. D.)--University of Chicago, Committee on Immunology, August 2001. / Includes bibliographical references. Also available on the Internet.
180

Molecular mechanisms that regulate the LKLF transcription factor in T cells /

Lin, Andy C. January 2001 (has links)
Thesis (Ph. D.)--University of Chicago, Pritzker School of Medicine, Department of Pathology, August 2001. / Includes bibliographical references. Also available on the Internet.

Page generated in 0.0318 seconds