Spelling suggestions: "subject:"4cells"" "subject:"50cells""
171 |
Studies of the regulatory function of L2a in mouse CD8 gene expressionYao, Xin, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
|
172 |
Uncovering the mechanism of IL-4-mediated T cell survivalMoscibrocki, Cathleen M. 06 June 2001 (has links)
Graduation date: 2002
|
173 |
Investigation of the mechanism of 3,3',4,4',5,5'-hexachlorobiphenyl-induced suppression of cytotoxic T lymphocyte activity in C57B1/6 mice : endocrine and cytokine dysregulationDeKrey, Gregory K. 19 September 1994 (has links)
Graduation date: 1995
|
174 |
X-Linked FOXP3 & OTC in immune tolerance and autoimmunityChang, Xing. January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Available online via OhioLINK's ETD Center; full text release delayed at author's request until 2007 Jun 1
|
175 |
IL-6-engineered DC stimulate efficient antitumor immunity via enhanced and prolonged T cell cytotoxicity and survivalZhang, Bei 06 March 2009
Dendritic cells (DCs) modified by some immunomodulatory genes can stimulate a strong antitumor immunity and improve the treatment of tumor cells on the condition that the sources of tumor-associated antigens (TAAs) are available. IL-6, a pleotropic cytokine, has been found to inhibit CD4+25+ regulatory T (Treg)-cell-mediated immune suppression and decrease activation-induced cell death (AICD) without interfering the process of T-cell activation. To enhance DC-based cancer vaccine, we engineered DCs to express transgene IL-6.<p>
We constructed a fiber-modified recombinant adenovirus vector AdVIL-6 expressing IL-6, infected DCs with AdVIL-6, and then investigated the efficacy of antitumor immunity induced by vaccination with DCs engineered to express IL-6 transgene. We demonstrated that DCs infected with the recombinant adenovirus AdVIL-6 induced DC maturation by up-regulation of the expression of MHC class U (Iab), CD40, CD54 and CD80 expression. We also demonstrated that vaccination of OVA-pulsed AdVIL-6-infected DCs (DCOVA/AdVIL-6) was able to stimulate a stronger OVA-specific effector CD8+ cytotoxic T lymphocyte (CTL) response than vaccination with the control virus AdVpLpA-infected DCs (DCOVA/AdVpLpA). More importantly, vaccination of mice with DCOVA/AdVpLpA could protect 100% mice from intravenous (i.v.) challenge of a low dose (0.5~105 cells per mouse, 8/8 mice protected) of OVA-expressing BL6-10OVA tumor cells, but only 63% mice from i.v. challenge of a high dose (1~105 cells per mouse, 5/8 mice protected) of BL6-10OVA tumor cells. However, vaccination of DCOVA/AdVIL-6 induced an augmented antitumor immunity in vivo by complete protection of mice (8/8) from challenge of both low and high doses of BL6-10OVA tumor cells.<p>
To study the immune mechanism underlying the result of IL-6 engineered-DC vaccine, we generated the DCOVA/AdVIL-6-activated OTI CD8+ T cells and DCOVA/AdVpLpA-activated OTI CD8+ T cells. We demonstrated that DCOVA/AdVIL-6-activated CD8+ T cells displayed a higher level of CD62L, FasL and perforin than DCOVA/AdVpLpA-activated CD8+ T cells. DCOVA/AdVIL-6-activated CD8+ T cells had a prolonged T cell survival after they were transferred into C57BL/6 mice. Furthermore, the results of the animal study showed that 100% of mice bearing OVA-expressing EG7 tumors (8mm in diameter, 8 mice per group) were tumor-free after they were i.v. treated with DCOVA/AdVIL-6-activated CD8+ T cells (2~106 cells per mouse). However, the control DCOVA/AdVpLpA-activated CD8+ T cells failed in eradication of EG7 tumors in all 8/8 mice.<p>
Taken together, Adenovirus-mediated IL-6 transgene engineered DC vaccine stimulates efficient CD8+ T cell responses and antitumor immunity via enhanced T cell cytotoxicity and prolonged T cell survival. DCs engineered to express IL-6 by adenovirus-mediated IL-6 gene transfer may offer a new strategy in production of DC cancer vaccines.
|
176 |
IL-6-engineered DC stimulate efficient antitumor immunity via enhanced and prolonged T cell cytotoxicity and survivalZhang, Bei 06 March 2009 (has links)
Dendritic cells (DCs) modified by some immunomodulatory genes can stimulate a strong antitumor immunity and improve the treatment of tumor cells on the condition that the sources of tumor-associated antigens (TAAs) are available. IL-6, a pleotropic cytokine, has been found to inhibit CD4+25+ regulatory T (Treg)-cell-mediated immune suppression and decrease activation-induced cell death (AICD) without interfering the process of T-cell activation. To enhance DC-based cancer vaccine, we engineered DCs to express transgene IL-6.<p>
We constructed a fiber-modified recombinant adenovirus vector AdVIL-6 expressing IL-6, infected DCs with AdVIL-6, and then investigated the efficacy of antitumor immunity induced by vaccination with DCs engineered to express IL-6 transgene. We demonstrated that DCs infected with the recombinant adenovirus AdVIL-6 induced DC maturation by up-regulation of the expression of MHC class U (Iab), CD40, CD54 and CD80 expression. We also demonstrated that vaccination of OVA-pulsed AdVIL-6-infected DCs (DCOVA/AdVIL-6) was able to stimulate a stronger OVA-specific effector CD8+ cytotoxic T lymphocyte (CTL) response than vaccination with the control virus AdVpLpA-infected DCs (DCOVA/AdVpLpA). More importantly, vaccination of mice with DCOVA/AdVpLpA could protect 100% mice from intravenous (i.v.) challenge of a low dose (0.5~105 cells per mouse, 8/8 mice protected) of OVA-expressing BL6-10OVA tumor cells, but only 63% mice from i.v. challenge of a high dose (1~105 cells per mouse, 5/8 mice protected) of BL6-10OVA tumor cells. However, vaccination of DCOVA/AdVIL-6 induced an augmented antitumor immunity in vivo by complete protection of mice (8/8) from challenge of both low and high doses of BL6-10OVA tumor cells.<p>
To study the immune mechanism underlying the result of IL-6 engineered-DC vaccine, we generated the DCOVA/AdVIL-6-activated OTI CD8+ T cells and DCOVA/AdVpLpA-activated OTI CD8+ T cells. We demonstrated that DCOVA/AdVIL-6-activated CD8+ T cells displayed a higher level of CD62L, FasL and perforin than DCOVA/AdVpLpA-activated CD8+ T cells. DCOVA/AdVIL-6-activated CD8+ T cells had a prolonged T cell survival after they were transferred into C57BL/6 mice. Furthermore, the results of the animal study showed that 100% of mice bearing OVA-expressing EG7 tumors (8mm in diameter, 8 mice per group) were tumor-free after they were i.v. treated with DCOVA/AdVIL-6-activated CD8+ T cells (2~106 cells per mouse). However, the control DCOVA/AdVpLpA-activated CD8+ T cells failed in eradication of EG7 tumors in all 8/8 mice.<p>
Taken together, Adenovirus-mediated IL-6 transgene engineered DC vaccine stimulates efficient CD8+ T cell responses and antitumor immunity via enhanced T cell cytotoxicity and prolonged T cell survival. DCs engineered to express IL-6 by adenovirus-mediated IL-6 gene transfer may offer a new strategy in production of DC cancer vaccines.
|
177 |
Studies of a matrix attachment region (MAR) adjacent to the mouse CD8a gene, and the MAR-binding proteins, SATB1 and CDP /Rojas Noguera, Ingrid Cecilia, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 186-201). Available also in a digital version from Dissertation Abstracts.
|
178 |
Regulators of G-protein signaling, RGS13 and RGS16, are associated with CXCL12-mediated CD4+ T cell migration /Xia, Lijin, January 2008 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Chemistry and Biochemistry, 2008. / Includes bibliographical references (p. 49-53).
|
179 |
TRAF4 and CD30/TRAF2 in normal T cell function /Harlin, Helena. January 2001 (has links)
Thesis (Ph. D.)--University of Chicago, Committee on Immunology, August 2001. / Includes bibliographical references. Also available on the Internet.
|
180 |
Molecular mechanisms that regulate the LKLF transcription factor in T cells /Lin, Andy C. January 2001 (has links)
Thesis (Ph. D.)--University of Chicago, Pritzker School of Medicine, Department of Pathology, August 2001. / Includes bibliographical references. Also available on the Internet.
|
Page generated in 0.0207 seconds