Spelling suggestions: "subject:"4cells"" "subject:"50cells""
741 |
Direct Delivery of piggyBac CD19 CAR T Cells Has Potent Anti-tumor Activity against ALL Cells in CNS in a Xenograft Mouse Model / piggyBac CD19 CAR T細胞の直接注入は、異種移植マウスモデルにおいて中枢神経内の急性リンパ性白血病細胞に対して、効果的に抗腫瘍効果を発揮するTanaka, Kuniaki 25 January 2021 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22882号 / 医博第4676号 / 新制||医||1047(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 髙折 晃史, 教授 濵﨑 洋子, 教授 羽賀 博典 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
742 |
Inactivation of the PD-1-dependent immunoregulation in mice exacerbates contact hypersensitivity resembling immune-related adverse events / PD-1依存的な免疫制御機構の抑制は、免疫関連副作用に類似する接触性皮膚炎の悪化を引き起こすAshoori, Matin Dokht 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第23105号 / 医博第4732号 / 新制||医||1050(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 竹内 理, 教授 上野 英樹, 教授 椛島 健治 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
743 |
Antigen Specific CD4+ and CD8+ T Cell Recognition During Mycobacterium Tuberculosis InfectionYang, Jason D. 15 March 2018 (has links)
Mycobacterium tuberculosis (Mtb) causes human tuberculosis, and more people die of it than of any other pathogen in the world. Immunodominant antigens elicit the large majority of T cells during an infection, making them logical vaccine candidates. Yet, it is still unknown whether these immunodominant antigen-specific T cells recognize Mtb-infected cells. Two immunodominant antigens, TB10.4 and Ag85b, have been incorporated into vaccine strategies. Surprisingly, mice vaccinated with TB10.4 generate TB10.4-specific memory CD8+ T cells but do not lead to additional protection compared to unvaccinated mice during TB. Ag85b-specific CD4+ T cells are also generated during vaccination, but the literature on whether these cells recognize Mtb-infected cells is also inconsistent.
We demonstrate that TB10.4-specific CD8+ T cells do not recognize Mtb-infected cells. However, under the same conditions, Ag85b-specific CD4+ T cells recognize Mtb-infected macrophages and inhibit bacterial growth. In contrast, polyclonal CD4+ and CD8+ T cells from the lungs of infected mice can specifically recognize Mtb-infected macrophages, suggesting macrophages present antigens other than the immunodominant TB10.4. The antigen location may also be critical for presentation to CD8+ T cells, and live Mtb may inhibit antigen presentation of TB10.4. Finally, we propose that TB10.4 is a decoy antigen as it elicits a robust CD8+ T cell response that poorly recognizes Mtb-infected macrophages, allowing Mtb to evade host immunity.
|
744 |
Microfluidic and computational technologies to improve cell therapy manufacturingAnandakumaran, Priya Nivashini January 2021 (has links)
Cell therapies are an emerging form of therapy, with the potential to treat and cure a variety of diseases. As more cell therapies become approved and commercialized, challenges remain in the manufacturing of these often single-batch products due to their complexity and patient-to-patient variability, which limit their cost-effectiveness and reproducibility. In this dissertation, we aim to improve the manufacturing of two different cell therapies, namely, organoid-based cell therapies using hydrogel scaffolds, and adoptive cell therapies using deep learning and microfluidics, to facilitate their widespread clinical use.
First, we develop new tools to manufacture organoids, which are widespread in drug-screening technologies, but have been sparingly used for cell therapy as current approaches for producing self-organized cell clusters lack scalability or reproducibility. Here, we use alginate microwell scaffolds to form pre-vascularized organoids composed of endothelial cells and mesenchymal stem cells, where the size and structure can be readily tuned by varying the cell source, ratio of cells, or size of the microwells. Furthermore, by uncrosslinking the alginate scaffold, the organoids can be harvested in a gentle manner without damaging their structure or impairing their functionality. Finally, we assess the ability of the pre-vascularized organoids to restore vascular perfusion in a mouse model of hindlimb ischemia. By making use of the dynamic nature of hydrogels, this method can offer high yields of reproducible, self-organized multicellular aggregates for use in cell therapies.
Next, we shift our focus to the identification of antigen-specific T cells, which is a critical step in the manufacturing of adoptive cell therapy. Conventional techniques for selecting antigen-specific T cells are time-consuming, making them difficult to adapt for large-scale manufacturing, and are limited to pre-defined antigenic peptide sequences. Here we train a deep learning model to rapidly classify videos of antigen-specific CD8+ T cells by distinguishing the distinct interaction dynamics (in motility and morphology) between cognate and non-cognate T cells and dendritic cells (DCs). The model is able to classify high affinity antigen-specific CD8+ T cells from OT-I mice with an area under the curve (AUC) of 0.91, and generalizes well to other types of high and low affinity CD8+ T cells. We also show that the experimental addition of anti-CD40 antibodies amplifies the differences between cognate and non-cognate T cells and DCs, thereby improving the model’s ability to discriminate between them. This workflow can be used to better understand the role of cognate T cell – DC interactions in the pathogenesis of cancer and autoimmune diseases, and can be integrated into a device to simplify and accelerate the selection of antigen-specific T cells for use in adoptive cell therapy.
Finally, we sought to develop a device to address two other issues associated with the selection of antigen-specific T cells: low-throughput screening, and the inability to assess a mixed population of T cells against a library of antigens, both of which are necessary to identify rare T cells, and improve clinical outcomes of the corresponding cell therapy. A few specialized assays exist that can assess T cells against multiple antigens, but they are often limited by an increased manufacturing burden. Here, we develop a microfluidic artificial lymph node, which is inspired by the efficient selection of antigen-specific T cells in vivo. In particular, our flow-through design consists of multiple compartments, each containing microcarrier beads coated with DCs presenting a distinct antigen, such that T cells that are flowed sequentially through each compartment can stably arrest to cognate DCs, becoming captured in the appropriate compartment. We test a single-compartment device computationally using agent-based simulations, and experimentally using a mixed population of antigen-specific and wild-type (WT) (non-specific) T cells, and in both cases we observe a preferential accumulation of cognate, antigen-specific T cells. This proof-of-concept single-compartment device can be readily scaled up to systematically test many T cells against multiple antigens.
Underlying this work is the development of technologies to enable the large-scale manufacturing of cell therapies. Cell therapies are undergoing a transformation to a new class of therapeutic modality, and there are many emerging questions, especially related to the scale-up and scale-out of production processes. Together, this work aims to engineer technologies to improve cell therapy manufacturing processes, facilitate their clinical translation, and ensure their availability to all patients who would benefit from them.
|
745 |
Engineered Bacteria for Cancer ImmunotherapyChowdhury, Sreyan January 2021 (has links)
The first reports of bacteria as a cancer therapy date back to the pioneering work of Dr. William Coley–now widely regarded as the father of immunotherapy. As far back as 1891, Coley demonstrated that the intratumoral injection of live and later heat-killed isolates of Streptococcus pyogenes and Serratia marcescens could induce durable remission in patients with bone and soft tissue sarcoma. While this therapy was deemed to unsafe at the time, Coley’s findings have formed the basis for our modern understanding of immunology and cancer immunotherapy. Over the past two decades, the advent of synthetic biology is driving a new era of medicine through the genetic programming of living cells. This transformative approach enables the creation of engineered systems that sense and respond to diverse environments, permitting safe and effective targeted delivery of therapeutic payloads within disease sites.
In this thesis, I seek to utilize principles from synthetic biology and immunology to engineer bacteria for immunotherapeutic delivery. I have developed multiple strains of non-pathogenic E. coli capable of colonizing solid tumors and delivering diverse immunotherapeutic payloads specifically within the tumor. This local delivery approach enables the utilization of therapeutic agents that may be otherwise systemically toxic. In one instance, we engineered an encoded nanobody antagonist of CD47 (CD47nb), an anti-phagocytic receptor commonly overexpressed in several human cancers. We show that delivery of CD47nb by tumor-colonizing bacteria increases activation of tumor-infiltrating T cells, stimulates rapid tumor regression, prevents metastasis, and leads to long-term survival in a syngeneic tumor model. Thus, engineered bacteria may be used for safe and local delivery of diverseimmunotherapeutic payloads leading to systemic antitumor immunity.
|
746 |
Polyamines metabolism in T lymphocytesWu, Ruohan 19 November 2021 (has links)
No description available.
|
747 |
Tissue-wide dynamics of human anti-viral immunityPoon, Maya January 2022 (has links)
The human body is exposed to a multitude of prevalent viruses, requiring ongoing surveillance and protection by the immune system. Maintenance of human anti-viral adaptive immunity in diverse tissue sites is determined by a multitude of factors and critical for long-term protection against repeat exposure to viral infection. Yet, studies of anti-viral immunity have primarily been limited to animal studies and studies of peripheral blood in humans. Studies in mice have demonstrated that memory T cells in tissues provide superior protection against viral infection compared to circulating T cells, particularly tissue-resident memory T cells (TRM), which remain in tissues long-term without re-entering circulation. However, much remains to be understood about how anti-viral immune responses are maintained in human tissues and how adaptive immune cells in various tissues sites function upon re-exposure to viral antigens. We have established a human tissue resource through a collaboration with LiveOnNY, a local organ procurement organization, to obtain blood and multiple lymphoid and mucosal sites from donors of all ages. Using this tissue resource, we employed comprehensive cellular and molecular analysis to investigate tissue immunity to three prevalent but distinct viruses—influenza A, CMV, and SARS-CoV-2.
We compared CD8+ T cells recognizing ubiquitous and longstanding viruses influenza A and CMV across multiple tissue sites of 58 organ donors ages 1-78 years in order to elucidate how covariates of virus, tissue, age, and sex impact the anti-viral immune response. Using flow cytometry, T cell receptor repertoire sequencing, functional assays, and single-cell transcriptional profiling, we showed that virus specificity and tissue localization are the primary drivers of anti-viral T cell immune responses in the human body, with age and sex further influencing T cell subset differentiation. Specifically, virus specificity correlated with virus-specific T cell distribution, memory subset differentiation, and clonal repertoire, while tissue localization determined overall subset distribution and functional responses. We further investigated the tissue-localized immune response to emergent SARS-CoV-2.
By examining multiple tissues of organ donors who had recovered from natural infection by SARS-CoV-2, we showed that adaptive memory immune responses persisted months after infection, with memory T and B cells preferentially localized in the lung and lung-associated lymph node. Persisting memory cell populations included tissue-resident T and B cells, particularly in the lung, as well as germinal center B cells in the lung-associated lymph node along with follicular helper T cells, indicating ongoing generation of humoral immunity. Together, these findings highlight the importance of tissue-localized anti-viral immunity and help to define characteristics of site-specific protective immunity that may be leveraged for the development of more effective treatment and prevention strategies.
|
748 |
Anomalies de la mémoire lymphocytaire T antivirale et infections virales en transplantation rénale / Impairment of anti-viral T cell memory and viral infectious diseases in kidney transplantationDekeyser, Manon 18 February 2019 (has links)
Les réactivations à Polyomavirus, BK-virus (BKv) et JC-virus (JCv), sont des complications majeures en transplantation rénale, responsables de néphropathie à BKv (Nx BKv) et de leuco-encéphalopathie multifocale progressive (LEMP). Sans thérapeutique antivirale spécifique, ces infections virales menent à la perte du rein transplanté ou au décès du patient. Notre groupe a conduit une étude observationnelle incluant 100 patients transplantés rénaux avec différents niveaux de réactivation BKv (Etude MelTyK). Nous avons mis en évidence une altération progressive de la fonctionnalité des lymphocytes T spécifiques du BKv, associée à une corrélation inverse entre la polyfonctionnalité lymphocytaire ou le nombre d’incompatibilités HLA et la charge virale BKv plasmatique. Cette altération de la fonctionnalité suggérait un état d’épuisement des lymphocytes T spécifiques du BKv en fonction du niveau de réactivation BKv. Ces données nous ont conduit à élaborer une méthode biologique non-invasive d’évaluation du risque individuel de Nx BKv (brevet FR1855342). Cette méthode a pour objectif d’aider au diagnostic de Nx BKv sans avoir recours à la biopsie du greffon rénal et de stratifier le risque de développer cette complication. Par ailleurs, nous avons décrit un cas fatal de LEMP associé à un état d’anergie des lymphocytes T spécifiques du JCv. L’étude de la fonctionnalité des lymphocytes T spécifiques des Polyomavirus pourrait ouvrir de futures pistes diagnostiques et/ou thérapeutiques. Elle pourrait permettre de dépister les patients à risques de Nx BKv et pourrait contribuer au développement d’immunothérapies innovantes. La restauration de la fonctionalité des lymphocytes T spécifiques des Polyomavirus pourrait ainsi fournir une piste thérapeutique prometteuse afin de contrôler ces réactivations virales sans majorer le risque de rejet allogénique. / Polyomavirus reactivations, BK-virus (BKv) and JC-virus (JCv), are major complications in kidney transplantation, responsable of BKv associated nephropathy (BKvAN) and progressive multifocal leukoencephalopathy (PML). Without antiviral treatment, these viral reactivations lead to kidney transplant loss or patient death. Our group has headed an observational study including 100 kidney transplant recipients with different BKv reactivation levels (the MelTyK study). We were able to highlight a gradual loss of functional BKv-specific T cells, associated with an inverse correlation between lymphocyte functionality or HLA mismatches and plasmatic BKv viral load. This functional impairment suggested an exhaustion of BKv-specific T cells according to BKv reactivation levels. These data have led us to develop a non-invasive biological method to assess the individual BKvAN risk (patent FR1855342). This method is intended to help the BKvAN diagnosis, without renal graft biopsy and to stratify the risk to develop this complication. Moreover, we have described a fatal case of PML associated with a anergy state of the JCv-specific T cells. Functional assessment of Polyomavirus-specific T cells could help to propose new diagnostic assays and immunotherapy approaches. Functional restauration of Polyomavirus-specific T cells could provide a promising therapeutic approache to control viral reactivations without increase of allogenic rejection risk.
|
749 |
Targeting the metabolic environment to modulate T cell effector function / Modulation des fonctions effectrices des cellules T en exploitant l’environnement métaboliqueFerreira Matias, Maria 07 October 2019 (has links)
L’activation des cellules T est initiée suite à la rencontre avec un antigène spécifique. Les études réalisées pour mieux comprendre ce processus d’activation se sont principalement focalisées sur le rôle des cellules présentatrices d'antigènes et des cytokines. Toutefois, des données récentes soulignent également l'importance du microenvironnement métabolique pour soutenir l’augmentation des besoins énergétiques et biosynthétiques liés à la stimulation antigénique. Cette reprogrammation métabolique est conditionnée par la disponibilité en nutriments et la teneur en oxygène qui peuvent être altérés en conditions pathologiques, comme dans des tumeurs. En effet, plusieurs groupes dont le nôtre ont montré qu’en cas de faible disponibilité en nutriments, une compétition peut se créer entre les cellules tumorales et les cellules T, impactant de ce fait négativement leurs fonctions anti-tumorales. Cet effet est dû, du moins en partie, aux profils métaboliques distincts des sous-populations de cellules T; alors que les cellules T effectrices (dont les cellules Th1) sont fortement glycolytiques, les cellules T régulatrices suppressives (Treg) présentent un métabolisme plus mixte avec des niveaux accrus d'oxydation lipidique. Il est donc important de déterminer comment les changements métaboliques des cellules T anti-tumorales affectent leur persistance et leur fonctionnalité. Ainsi, j'ai entrepris des travaux afin d’évaluer si le niveau d’expression du transporteur de glucose Glut1 permettait d’identifier et de sélectionner des cellules T ayant des fonctions effectrices distinctes. Nous avons confirmé cette hypothèse et notamment montré que les cellules T exprimant un niveau élevé de Glut1 possèdent un potentiel de sécrétion d’IFNg accru.De plus, nos travaux montrent que la disponibilité en nutriments extracellulaires est un élément clé pour la différenciation terminale des cellules Th1. En effet, l'activation des cellules T CD4 naïves en conditions limitantes en glutamine induit leur différenciation en cellules Treg Foxp3+. Plus surprenant encore, cette carence induit un blocage de la différenciation Th1 même lors d’une polarisation vers ce lignage. De plus, en conditions de carence en glutamine, nous avons découvert que l'alpha-cétoglutarate (aKG), un métabolite dérivé de la glutamine, rétablit cette différenciation terminale Th1. J'ai ensuite évalué l'impact de l’aKG dans les processus de différenciation Th1/Treg en condition non limitante en glutamine. Mes données montrent que, dans des conditions de polarisation Th1, l’ajout d’aKG améliore la différenciation des cellules T CD4 naïfs en cellules Th1 et augmente la production d’IFNg. A l’inverse, l’ajout d’aKG s’accompagne d’une diminution des cellules Foxp3+ et d’une augmentation de la sécrétion de cytokines inflammatoires dans des conditions de polarisation Treg. L'altération de la différenciation des cellules T médiée par l'aKG est notamment associée à une phosphorylation oxydative (OXPHOS) accrue ; ainsi, l'ajout d’un inhibiteur du cycle de Krebs et du complexe mitochondrial II /succinate déshydrogénase, atténue le blocage de la différenciation Treg induit par l'aKG. De façon remarquable, ces modifications de l'équilibre Th1/Treg médiées par l'aKG sont maintenues in vivo et impactent le devenir de cellules T exprimant un récepteur chimérique anti-tumoral (CAR) injectées chez des souris porteuses de tumeurs. En résumé, nos données montrent qu'une faible teneur en aKG intracellulaire liée à une disponibilité limitée en glutamine, favorise un phénotype Treg, alors que des niveaux élevés d’aKG modifient l'équilibre vers un phénotype Th1.En conclusion, les données générées au cours de ma thèse devraient permettre le développement de stratégies permettant de sélectionner des cellules T ayant des propriétés effectrices anti-tumorales améliorées. / T cells are stimulated upon interaction with their cognate antigen. While much research has focused on the role of antigen presenting cells (APC) and cytokines as important components of the T cell microenvironment, recent data highlight the importance of the metabolic environment in sustaining the energetic and biosynthetic demands that are induced upon antigen stimulation. The subsequent metabolic reprogramming of the T cell is conditioned by the nutrient composition and oxygen levels. Notably, this environment can be altered by pathological conditions such as tumors and data from our group, as well as others, have shown that the competition of T cells and tumor cells for limiting amounts of nutrients has a negative impact on T cells, inhibiting their anti-tumor effector functions. This effect is due, at least in part, to the distinct metabolic profiles of T lymphocyte subsets; T effector cells (including Th1 cells) are highly glycolytic while suppressive Foxp3+ regulatory T cells (Tregs) display a mixed metabolism with increased levels of lipid oxidation. It is therefore important to determine how changes in the metabolic programming of anti-tumor T cells impacts on their persistence and function. Indeed, in the context of my PhD research, I found that high levels of the glucose transporter Glut1 was associated with a significantly increased level of IFNγ secretion by both CD4 and CD8 T cells. Furthermore, there was a bias of CD8 over CD4 lymphocytes in the Glut1-hi T cell subset. These data point to the importance of metabolic alterations in the fate and effector function of T lymphocytes and during my PhD, I focused on elucidating the metabolic parameters that regulate effector and regulatory T cells, with the goal of improving the efficacy of anti-tumor T cells. In this context, I contributed to initial studies from our group, revealing a critical role for extracellular nutrient availability in terminal CD4+ T cell differentiation. Activation of naïve CD4+ T cells under conditions of glutamine deprivation caused them to differentiate into induced Treg (iTreg). Moreover, the skewing of glutamine-deprived naive CD4+ T cells to a Foxp3+ fate occurred even under Th1-polarizing conditions, blocking terminal Th1 differentiation. Under glutamine-deprived conditions, we found that alpha-ketoglutarate (αKG), a glutamine-derived metabolite, rescued Th1 differentiation. I then evaluated the impact of aKG under glutamine-replete conditions in the Th1/iTreg differentiation processes. My studies showed that, under Th1-polarizing conditions, aKG markedly enhanced naïve CD4+ T cell differentiation into Th1 cells and increased IFNg secretion. Moreover, under Treg-polarizing conditions, αKG decreased Foxp3 expression and increased the secretion of inflammatory cytokines such as IFNg, GM-CSF and IL-17. Notably, the aKG-mediated alteration in T cell differentiation was associated with an augmented oxidative phosphorylation (OXPHOS), and inhibiting the citric acid cycle and the mitochondrial complex II with malonate, an inhibitor of succinate dehydrogenase (SDH), alleviated the αKG-mediated block in Treg differentiation. Impressively, these aKG-mediated changes in the Th1/Treg balance were maintained in vivo, promoting a Th1-like profile in T cells expressing an anti-tumor chimeric antigen receptor (CAR) in tumor-bearing mice. Thus, our data show that low intracellular aKG content, caused by limited external glutamine availability, imposes a Treg phenotype while high aKG levels shift the balance towards a Th1 phenotype.Altogether, the data generated during my PhD will promote the development of metabolic strategies aimed at modulating T cell function and foster the design of nutrient transporter-based approaches that can be used to select T lymphocytes with enhanced anti-tumor effector properties.
|
750 |
Agrégation et immunisation contre les protéines thérapeutiques : étude de la maturation des cellules dendritiques et de la réponse lymphocytaire / Protein aggregation and immunization : study of dendritic cells maturation and T-cell responseNabhan, Myriam 13 December 2019 (has links)
L’immunogénicité des biothérapies constitue une limitation majeure au traitement des patients atteints de maladies chroniques et se traduit par la production d’anticorps dirigés contre le biomédicament (anti-drug antibodies, ADA). La détection d’ADA de haute affinité et d’isotypes divers chez les patients suggère la mise en place d’une réponse immunitaire adaptative classique orchestrée par les cellules dendritiques. Par ailleurs, la présence d’agrégats protéiques dans les spécialités administrées serait un des facteurs favorisant l’immunogénicité, ces agrégats pouvant jouer le rôle de signal de danger.L’objectif de notre travail était de mieux comprendre les interactions des agrégats de protéines avec les cellules dendritiques et les lymphocytes T aboutissant au déclenchement d’une réponse immunitaire adaptative spécifique nécessaire à la production d’ADA.Dans un premier temps, nous avons montré que des agrégats d’infliximab, anticorps monoclonal anti-TNFa;, induisaient la maturation de cellules dendritiques humaines dérivées de monocytes (moDC). Celle-ci se traduit par l’augmentation de l’expression de marqueurs membranaires d’activation et de costimulation et la sécrétion de cytokines et chimiokines pro-inflammatoires. Nous avons également montré que ces modifications phénotypiques induites par les agrégats favorisaient la prolifération de lymphocytes T CD4+ et la production de cytokines. Par la suite, nous avons décrit les mécanismes cellulaires précoces impliqués dans l’activation de ces cellules en montrant que la neutralisation du récepteur FcgRIIa et de la tyrosine kinase Syk inhibait la maturation des moDC ainsi que l’activation des lymphocytes T CD4+.Par ailleurs, nous avons évalué le rôle des agrégats d’infliximab dans la génération de néo-épitopes, en mettant en évidence l’existence d’un répertoire de lymphocytes T CD4+ naïfs reconnaissant spécifiquement les agrégats d’infliximab, chez le sujet sain. Ainsi, grâce à des préparations d’agrégats bien caractérisées et d’un modèle de co-cultures autologues de lymphocytes T CD4+ naïfs et de moDC chargées avec les agrégats, nous avons montré que la fréquence de LT CD4+ naïfs spécifiques des agrégats d’infliximab est plus importante que celle retrouvée pour l’anticorps natif. Ces résultats suggèrent une présentation accrue d'épitopes et de néo-épitopes dérivant des agrégats d'infliximab.In fine, ce travail contribue à une meilleure compréhension des conséquences biologiques de l’agrégation des protéines à visée thérapeutique sur le déclenchement de la réponse immunitaire adaptative spécifique en mettant l’accent sur les rôles adjuvant et antigénique des agrégats protéiques. / Immunogenicity of biotherapeutic proteins is a major drawback in the treatment of patients with chronic diseases characterized by the production of anti-drug antibodies (ADA). The detection of ADA with high affinity and of various isotypes suggests a CD4 T cell-dependent adaptive immune response with a pivotal role for dendritic cells. Among other factors, the presence of protein aggregates in the administered products can promote immunogenicity, as aggregates seem to act as danger signals.The aim of our work is to better understand the interactions of protein aggregates with dendritic cells and T cells, leading to the establishment of a specific adaptive immune response needed for the production of ADA.We first showed that aggregation of infliximab, a monoclonal anti-TNFa; antibody, induced the maturation of human monocyte-derived dendritic cells (moDC) via an increase in the expression of activation and costimulatory surface markers and the secretion of pro-inflammatory cytokines and chemokines. Moreover, we showed that these phenotypic changes induced by aggregates promote CD4 T-cell proliferation and cytokine production. Subsequently, we described the early events involved in moDC and T-cell response by showing that the neutralization of the FcgRIIa receptor and the tyrosine kinase Syk inhibited moDC maturation and CD4 T-cell activation.Furthermore, we evaluated the involvement of infliximab aggregates in the generation of neo-epitopes by identifying a naïve CD4 T-cell repertoire recognizing infliximab aggregates in healthy subjects. By testing well characterized aggregate preparations and using an autologous co-culture model of naïve CD4 T cells and moDC loaded with aggregates, we showed that the frequency of naïve CD4 T cells specific for infliximab aggregates was higher than the one found for the native antibody. These results suggested an increased presentation of epitopes and neo-epitopes derived from infliximab aggregates.In resume, our work contributes to a better understanding of the biological consequences of therapeutic protein aggregation on the onset of the specific adaptive immune response by focusing on the adjuvant and antigenic role of protein aggregates.
|
Page generated in 0.0679 seconds