• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Co-Evolution and Cross-Reactivity of Influenza A and Epstein-Barr Virus CD8 TCR Repertories with Increasing Age

Clark, Fransenio G. 18 November 2020 (has links)
Acute viral infections induce CD8 memory T cells that play an important role in the protection of the host upon re-infection with the same pathogen. These virus epitope-specific memory CD8 T cells develop complex TCR repertoires that are specific for that epitope. As individuals age virus-specific immunity appears to wane. Older people have difficulty controlling infection with common viruses such as influenza A (IAV), a RNA virus which causes recurrent infections due to a high rate of genetic mutation, and Epstein Barr virus (EBV), a DNA virus which persists in B cells for life in the 95% of people that become acutely infected. Many factors may contribute to this waning immunity including changes in virus-specific TCR repertoires. We hypothesize that epitope-specific memory CD8 TCR repertoires to these two common viruses change with increasing age and that CD8 T cell cross-reactivity may be one of the mechanisms mediating these changes. To address this hypothesis in our first study, we compared epitope-specific CD8 memory TRBV repertoires directly ex vivo for these two common human viruses. In cross-sectional and longitudinal studies of EBV seropositive, HLA-A2+, young (18-22 years), middle age (25-59 years), and older (>60 years) donors, we demonstrated that CD8 memory TCR repertoires to three immunodominant epitopes, known to have cross-reactive responses, IAV-M158-66, EBV-BM280-288, and EBV-BR109-117 co-evolve as individuals age. Cross-sectional studies showed that IAV-M1-and both EBV-specific repertoires narrowed their TRBV usage by middle-age. In fact, narrowing of EBV-BM and EBV-BR-specific TRBV usage correlated with increasing age. Although narrowing of IAV-M1-specific TRBV did not directly correlate with increasing age there was clear evidence that the TRBV usage was changing with age. The dominant TRBV19 usage appeared to become bimodal in the older age group and interestingly TRBV30 usage did directly correlate with age. For the EBV epitope-specific responses there was preferential usage of particular TRBV and changes in the hierarchy of TRBV usage in the different age groups. Longitudinal studies tracking 3 donors over 10-15 years (middle age to older) showed that there were changes in the TCR repertoire of IAV-M1, EBV-BM and -BR-specific responses over time. In two of the donors who experienced acute IAV infection there was evidence these repertoire changes may be influenced by TCR cross-reactivity, which is enhanced during acute IAV infection. The results of this first ex vivo study are consistent with our hypothesis. They suggest that virus-specific TCR repertoires change over time as an individual ages leading to narrowing of the repertoire and may co-evolve in the presence of CD8 T cell cross-reactivity. To further test our hypothesis in a second study we compared CD8 memory TRAV and TRBV repertoires to the three immunodominant epitopes IAV-M1, EBV-BM, and EBV-BR in the two extreme age groups, young donors (YSP) (18-22 years) and older donors (OSP) (>60 years) using the same donors as in the first study. Since these three epitopes are known to generate cross-reactive CD8 T cell responses and humans during their lifetime are frequently infected with both viruses at the same time these studies were also designed to more closely examine if TCR cross-reactivity could contribute to changes in TCR repertoire with increasing age. We examined the differences in both TRAV and TRBV in these two age groups by monoclonal antibody (mAb) staining and by deep sequencing and single cell sequencing in tetramer positive sorted cells from short-term cultures. Our initial studies showed that there were strong correlations in TRBV usage between short-term cultured and ex vivo antigen-specific responses; functional differences as well as differences in TRBV usage and diversity as measured by mAb staining particularly for the EBV epitope-specific responses between YSP and OSP donors. The TCR deep sequencing data also showed significant differences in TRBV usage between YSP and OSP. However, there were many more differences in TRAV and TRAJ usage than TRBV between the age groups suggesting that TRAV may play a greater role in evolution of the TCR repertoire. With increasing age, there was a preferential selection or retention of TCR for all three epitopes that have features in their CDR3a and b that increase their ease of generation, such as greater usage of convergent recombinant amino acids, and increase cross-reactive potential, such as multiple glycines. YSP and OSP differed in the patterns of TRAV/AJ and TRBV/BJ pairings and usage of dominant CDR3 motifs in all three epitope responses. Both YSP and OSP had cross-reactive responses between these 3 epitopes which were unique and differed from the cognate responses. Analyses of single cell sequencing data suggested that unique combinations of TRAV and TRBV are occurring, where one chain has features consistent with interaction with antigen one and the other chain had features consistent with interaction with antigen two. Interestingly, both the deep sequencing and single cell data show an increased tendency for the classic IAV-M1 specific clone BV19-IRSS-BJ2.7/AV27-CAGGGSQGNLIF-AJ42 to appear among the cross-reactive clones, suggesting that the dominance of this highly public clone may relate to its cross-reactivity with EBV. These results suggest that although OSP and YSP retain some of the classic TCR features for each epitope the TCR repertoire is gradually changing with age retaining TCR that are cross-reactive between these two common human viruses that we are exposed to frequently, one with recurrent infections and the other a persistent virus which frequently reactivates. These results are highly supportive our hypothesis and their importance in relation to viral immune-pathogenesis and potential novel immunotherapies will be discussed. These studies further emphasize the complexity and potential importance of human virus-specific T cell responses and TCR repertoires as people age and the need for a better understanding of TCR cross-reactivity between different viruses. For instance, at the present time these studies are highly relevant to better understanding the immune-pathogenesis observed during the COVID19 pandemic.
2

Human natural regulatory T cells subsets

Lei, Hong 15 May 2014 (has links)
Regulatorische T-Zellen (Treg) eröffnen neue immuntherapeutische Wege zur Kontrolle unerwünschter Immunreaktionen, jedoch wirft die Heterogenität dieser Zellen die Frage auf, welche Treg-Population für die klinische Anwendung. Darauf basierend werden in dieser Arbeit drei Fragestellungen bearbeitet: i) Bestimmung der Häufigkeit von Tregs und deren Subpopulationen in verschiedenen Altersgruppen bei Empfängern einer Organtransplantation (Tx) und einer gesunden Kontrollgruppe; ii) Vergleich der Suppressorkapazität verschiedener Treg-Populationen und in vitro-Expansion der Zellen unter Erhaltung ihrer Funktionalität; iii) Klärung der Differenzierungsmerkmale von Tregs und deren Verknüpfung mit konventionellen T-Zellen (Tconv) mittels Analyse des T-Zell-Rezeptor- (TCR) Repertoires. Sowohl bei gesunden Probanden als auch bei Tx-Empfänger konnte eine altersabhängige Verschiebung von naiven (TregN) hin zu dominant zentralen Gedächtnis-Zellen (TregCM) beobachtet werden, Treg von Tx-Empfängern hatten mehr Effektor-Memory-Zellen (EM) und sie waren mehr aktiviert. In Bezug auf die Kontrolle der frühen Tconv zeigen TregCM eine erhöhte Suppressorkapazität im Vergleich zu TregN. Außerdem sind im Gegensatz zu TregN nur TregCM dazu in der Lage, Apoptose bei Responderzellen zu induzieren. Der Grund hierfür könnte in der stärkeren Expression von CTLA-4 auf TregM liegen. Die Expansionskultur führte zur phänotypischen Veränderung der TregN, deren Umwandlung in TregCM mit einer verbesserten Suppressoraktivität verbunden ist. Die Daten legen nahe, dass das Expandieren mit gesamt Treg für die Adoptive-Treg-Therapie optimal sind, da sie der größte Anteil von ihnen die hochpotenten TregCM sind. TCR-Studien mittels Next Generation Sequencing zeigen weiter, dass TregM aus TregN entstehen, anstatt aus Tconv, in einem Antigen-gesteuerten Prozess. Diese Daten belegen erstmalig neue Erkenntnisse hinsichtlich der Unterschiede der TCR-Repertoires von TregM und Tconv beim Menschen. / Regulatory T cells (Treg) offer new immunotherapeutic options to control undesired immune reactions, but the heterogeinetiy of Treg raises the question which Treg population should be used for clinical translation Thus, this project involves three main parts: i) investigating Treg frequency and subsets distribution with age in healthy donors and transplant (Tx) patients; ii) comparing the suppressive capacity of Treg subsets and expanding them in vitro without losing functionality; iii) clarifyjing the differiation relationship of Treg subsets and their relation to conventional T cells (Tconv) by T cell receptor (TCR) repertoire analysis. From both healthy donors and Tx patients, an age-dependent shift from naïve Treg (TregN) to the dominant central-memory Treg (TregCM) was observed,; However,Treg in Tx patients contained more effector-memory EM cells, , and they were pre-activated due to the exposure to allo antigens,. Regarding control of early Tconv activation, TregCM showed enhanced suppressive capacity compared to TregN; furthermore, only TregCM could induce apoptosis of responder cells while TregN could not, which may result from thehigherexpression of cytotoxic T-lymphocyte antigen 4 (CTLA-4) on TregM. Following in vitro expansion of the Treg subsets, however, TregN converted mainly into TregCM phenotype with enhanced suppression activity. The poor proliferation capacity of TregEM might indicate EM as the terminal differential stage. These data suggest that expansion with total Treg is optimal for adoptive Treg therapy as the majority of them are the highly potent TregCM. Lastly, TCR repertoire study by next generation sequencing (NGS) indicate that TregM derived from TregN rather than Tconv in an antigen-driven process. The highest similarity of the TCR repertoires was observed between TregCM and TregEM. These data reveal new insights for the first time into the distinct TCR repertoires of Treg subsets and Tconv in human by NGS technology.
3

Vývoj B buněk u prasat a úloha gama delta T lymfocytů při imunizaci naivního imunitního systému. / The development of swine B cells and the role of gama delta T lymphocytes in immunization of naive immune system.

Štěpánová, Kateřina January 2013 (has links)
Thesis summary The process of B cell lymphogenesis in swine remains uncertain. Some reports indicate that pigs belong to a group of animal that use ileal Peyers's patches (IPP) for the generation of B cells while others point to the possibility that the bone marrow is functional throughout life. The functional subpopulations of B cells in swine are also unknown. Together with other ruminants, and also birds, γδ T cells in swine may account for >70% of all T cells which is in apparent contrast with humans and mice. The purpose of this thesis was to address these discrepancies and unresolved issues. The results disprove the existing paradigm that the IPP is primary lymphoid tissue and that B cells develop in IPP in an antigen-independent manner. On the other hand, it shows that bone marrow is fully capable of B cell lymphogenesis and remains active at least for the same period of time as it had been speculated for the IPP. This thesis also identified functionally different subsets of porcine peripheral B cells, and shows that CD21 molecules can be expressed in differential forms. Finally, this thesis identifies two lineages of γδ T cells that differ in many functional and phenotype features. This finding may explain why γδ T cells constitute of minority of lymphocytes in circulation of humans and mice.

Page generated in 0.0591 seconds