• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 218
  • 61
  • 29
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 1
  • Tagged with
  • 384
  • 90
  • 84
  • 68
  • 53
  • 48
  • 45
  • 43
  • 36
  • 35
  • 34
  • 32
  • 31
  • 29
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Phytostabilisation : use of wetland plants to treat mine tailings

Stoltz, Eva January 2004 (has links)
Mine tailings can be rich in sulphide minerals and may form acid mine drainage (AMD) through reaction with atmospheric oxygen and water. AMD contains elevated levels of metals and arsenic (As) that could be harmful to animals and plants. An oxygen-consuming layer of organic material and plants on top of water-covered tailings would probably reduce oxygen penetration into the tailings and thus reduce the formation of AMD. However, wetland plants have the ability to release oxygen through the roots and could thereby increase the solubility of metals and As. These elements are released into the drainage water, taken up and accumulated in the plant roots, or translocated to the shoots. The aim was to examine the effects of plant establishment on water-covered mine tailings by answering following questions: A) Is plant establishment on water-covered mine tailings possible? B) What are the metal and As uptake and translocation properties of these plants? C) How do plants affect metal and As release from mine tailings, and which are the mechanisms involved? Carex rostrata Stokes, Eriophorum angustifolium Honck., E. scheuchzeri Hoppe, Phragmites australis (Cav.) Steud., Salix phylicifolia L. and S. borealis Fr. were used as test plants. Influences of plants on the release of As, Cd, Cu, Pb, Zn and in some cases Fe in the drainage water, and plant element uptake were studied in greenhouse experiments and in the field. The results obtained demonstrate that plant establishment are possible on water-covered unweathered mine tailings, and a suitable amendment was found to be sewage sludge. On acidic, weathered tailings, a pH increasing substance such as ashes should be added to improve plant establishment. The metal and As concentrations of the plant tissue were found to be generally higher in roots than in shoots. The uptake was dependent on the metal and As concentrations of the tailings and the release of organic acids from plant roots may have influenced the uptake. The metal release from tailings into the drainage water caused by E. angustifolium was found to depend greatly on the age and chemical properties of the tailings. However, no effects of E. angustifolium on As release was found. Water from old sulphide-, metal- and As-rich tailings with low buffering capacity were positively affected by E. angustifolium by causing higher pH and lower metal concentrations. In tailings with relatively low sulphide, metal and As contents combined with a low buffering capacity, plants had the opposite impact, i.e. a reduction in pH and elevated metal levels of the drainage water. The total release of metal and As from the tailings, i.e. drainage water together with the contents in shoots and roots, was found to be similar for C. rostrata, E. angustifolium and P. australis, except for Fe and As, where the release was highest for P. australis. The differences in metal and As release from mine tailings were mainly found to be due to the release of O2 from the roots, which changes the redox potential. Release of organic acids from the roots slightly decreased the pH, although did not have any particular influence on the release of metal and As. In conclusion, as shown here, phytostabilisation may be a successful technique for remediation of mine tailings with high element and sulphide levels, and low buffering capacity.
132

Using the Dusty Gas Model to investigate reaction-induced multicomponent gas and solute transport in the vadose zone

Molins Rafa, Sergi 05 1900 (has links)
Biogeochemical reactions and vadose zone transport, in particular gas phase transport, are inherently coupled processes. To explore feedback mechanisms between these processes in a quantitative manner, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described based on the Dusty Gas Model, which provides the most generally applicable description for gas diffusion. Gas advection is described by Darcy's Law, which in the current formulation, is directly substituted into the transport equations. The model is used to investigate the interactions between geochemical reactions and transport processes with an emphasis to quantify reaction-induced gas migration in the vadose zone. Simulations of pyrite oxidation in mine tailings, gas attenuation in partially saturated landfill soil covers, and methane production and oxidation in aquifers contaminated by organic compounds demonstrate how biogeochemical reactions drive diffusive and advective transport of reactive and non-reactive gases. Pyrite oxidation in mine tailings causes a pressure reduction in the reaction zone and drives advective gas flow into the sediment column, enhancing the oxidation process. Release of carbon dioxide by carbonate mineral dissolution partly offsets pressure reduction, and illustrates the role of water-rock interaction on gas transport. Microbially mediated methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, both generation of CH4 in the methanogenic zone and oxidation of CH4 in the methanotrophic zone contribute to drive advective and diffusive fluxes. The model confirmed that non-reactive gases tend to accumulate in zones of gas consumption and become depleted in zones of gas production. In most cases, the model was able to quantify existing conceptual models, but also proved useful to identify data gaps, sensitivity, and inconsistencies in conceptual models. The formulation of the model is general and can be applied to other vadose zone systems in which reaction-induced gas transport is of importance.
133

Plant growth promotion on and phytoremediation of Athabasca oil sands coarse tailings using the endophytic fungus, Trichoderma harzianum TSTh20-1

2014 February 1900 (has links)
The environmental impact of bitumen mining in the Athabasca region of Canada is of growing concern. Among these concerns is the need and difficulty to remediate and reclaim affected land, including tailing sands (TS), a byproduct of the hot water extraction used to separate bitumen from solid materials. Current reclamation methods consist of multiple steps and take several decades to be effective. The primary reason for the difficulty in reclaiming disturbed land is the harsh environment found within the TS combined with the scale of the problem. TS are extremely nutrient poor, having below-detectable levels of NPK and extremely low C and S. In addition to this TS have pHs outside of environmental normals, and are hydrophobic due to residual hydrocarbons. Previously, an endophytic fungus, Trichoderma harzianum strain TSTh20-1, was isolated from pioneer plants growing naturally on TS sites, and was found to promote plant growth on TS. In my study TSTh20-1 was also found to increase the rate of drought recovery, and to enhance seed germination rates on a variety of soils. Suitable application methods were explored for this endophyte, including seed coatings, granules, as well as direct application to plant/soil. Regardless of method, TSTh20-1 was found to successfully colonize the plants. Twenty-four species of grasses, forbs, and legumes were tested for their ability to grow on TS. The four most successful species (Trifolium repens, Bouteloua gracilis, Medicago sativa, and Elymus trachycaulus) were put into a seed mixture for use in experiments. In mesocosm-scale experiments, plant health and soil parameters were measured after 2 months of growth. Hydrocarbon analysis of the first mesocosm showed a 2.7-fold increase in total hydrocarbons when TSTh20-1 and plants were present, suggesting degradation of large hydrocarbons beyond the scope of the analysis. A repeat experiment using a different source of tailings did not yield this same result. This is most likely due using a source of tailings that had substantially different chemical characteristics. TSTh20-1 was also analyzed for its ability to produce plant hormones or siderophores, to increase peroxidase enzyme activity, to protect plants from reactive oxygen species, and to solubilize phosphate precipitates from soil. All of these are known mechanisms microbes use to promote plant growth.
134

Growth of selected plants in response to treatments of acid copper mine tailings

Lochner, James Edmund January 1978 (has links)
No description available.
135

Mobilization of Lead and Zinc in Acid Sulfate Mine Tailings

Vazquez-Ortega, Angelica January 2008 (has links)
In this thesis, column experiments were conducted in order to determine the effect of irrigation with local groundwater on mobilization of lead and zinc in 50 years old sulfate-acid mine tailings. In addition, the influence of soluble oxalic acid, a common rhizosphere organic acid, was assessed by varying its concentration across an environmentally relevant range. In general, metal contaminant dissolution was not affected by the presence of oxalic acid. In both tailings, Zn mobilization was higher than Pb suggesting the presence of more kinetically labile Zn phases, regardless of the treatment used. Lead mobilization was also low because effluent solutions were near to equilibrium conditions with respect to gypsum, preventing Pb dissolution from Pb-sulfate minerals. Geochemical modeling also indicated that lead release was controlled by anglesite and plumbojarosite dissolution. Zinc release appears to be controlled by Zn-talc and goslarite.
136

ADSORPTION OF POLYAMINE CHELATED COPPER IONS ONTO GANGUE MINERALS AND HIGH CAPACITY ADSORBENTS

Cushing, Alexander 08 January 2014 (has links)
The effluent quality from mining & processing operations is monitored to ensure that maximum allowable limits are not exceeded. Recently, copper concentration levels in the effluent discharge flows of a copper and nickel mining company in Ontario have indicated increasing trends. A chemical particular to the problem is use of diethylenetriamine (DETA) in the process. Adsorption tests were conducted to investigate the ability of various adsorbents to remove and retain copper complexed with DETA and triethylenetetramine (TETA) in solutions. The tests were divided into two sections: gangue adsorbents (silica and pyrrhotite) and high capacity adsorbents (natural bentonite, peat, zeolite Y and zeolite ZSM-5). Pyrrhotite as a sulphide gangue had a greater adsorption capacity than silica for the concentration range studied. At 1 ppm initial concentration, over 80% of copper chelate was removed by minus 400 mesh pyrrhotite compared to 72% of the same size silica. Freundlich and Langmuir isotherm models of adsorption are applicable. However, the Langmuir adsorption isotherm was found to more closely represent the experimental data with a maximum adsorption capacity of 129.9 μg/g for copper complexed with DETA on pyrrhotite. For the high capacity adsorbents, natural bentonite, zeolite Y and peat each worked well at removing the copper chelates. Zeolite Y had the highest capacity for copper chelates and a maximum adsorption capacity of 55.9 mg/g. Freundlich and Langmuir adsorption isotherm models were studied with the Langmuir isotherm model more closely representing the experimental data. iii Studies were also conducted on the effect of temperature. This led to a thermodynamic analysis of adsorption and estimation of activation energies. The standard free energies estimated for adsorption of copper chelated on adsorbents studied were nearly always negative, typically varying from around -2 kJ/mol to -7 kJ/mol with increasing temperature. The activation energy was found to be highest for the natural bentonite system suggesting a strong adsorption (e.g. 40.5 kJ/mol for CuTETA). Desorption experiments on the peat indicated very poor reversal for the process, confirming that the adsorption of copper chelates on high capacity adsorption was indeed very strong. Settling experiments indicated copper chelates were highly effective as coagulants on bentonite. / Thesis (Master, Mining Engineering) -- Queen's University, 2013-12-25 15:00:39.553
137

Degradation of Naphthenic Acids in Athabasca Oil Sands Process-Affected Water Using Ozone

Hongjing , Fu Unknown Date
No description available.
138

Laboratory Study of Freeze-Thaw Dewatering of Albian Mature Fine Tailings (MFT)

Zhang, Ying Unknown Date
No description available.
139

Development Of Reclamation Substrates For Alberta Oil Sands Using Mature Fine Tailings And Coke

Luna-Wolter, Gabriela L. Unknown Date
No description available.
140

Study on Adsorption of Inorganic-organic Hybrid Polymers and Flocculation of Oil Sands Tailings

Wang, Shiqing Unknown Date
No description available.

Page generated in 0.021 seconds